
R 4 Epidemiology

2025-07-01



Table of contents

Welcome 13
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Introduction 14
Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Text conventions used in this book . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Other reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Contributing 16
Typos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
License Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

About the Authors 25
Brad Cannell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Melvin Livingston . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

I Getting Started 27

1 Installing R and RStudio 28
1.1 Download and install on a Mac . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.2 Download and install on a PC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2 What is R? 43
2.1 What is data? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.2 What is R? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.2.1 Transferring data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.2.2 Managing data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.2.3 Analyzing data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.2.4 Presenting data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3 Navigating the RStudio Interface 54
3.1 The console pane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.2 The environment pane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.3 The files pane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2



3.4 The source pane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.5 RStudio preferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4 Speaking R’s Language 71
4.1 R is a language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2 The R interpreter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.3 Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.4 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.4.1 Passing values to function arguments . . . . . . . . . . . . . . . . . . . . 75
4.5 Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.6 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.7 Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.8 Programming style . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5 Let’s Get Programming 84
5.1 Simulating data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.2 Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2.1 Vector types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.2.2 Double vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.2.3 Integer vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.2.4 Logical vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.2.5 Factor vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.3 Data frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.4 Tibbles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.4.1 The as_tibble function . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.4.2 The tibble function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.4.3 The tribble function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.4.4 Why use tibbles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.5 Missing data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.6 Our first analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.6.1 Manual calculation of the mean . . . . . . . . . . . . . . . . . . . . . . . 102
5.6.2 Dollar sign notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.6.3 Bracket notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.6.4 The sum function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.6.5 Nesting functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.6.6 The length function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.6.7 The mean function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.7 Some common errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6 Asking Questions 111
6.1 When should we seek help? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.2 Where should we seek help? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

3



6.3 How should we seek help? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.3.1 Creating a post on Stack Overflow . . . . . . . . . . . . . . . . . . . . . 113
6.3.2 Creating better posts and asking better questions . . . . . . . . . . . . . 117

6.4 Helping others . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

II Coding Tools and Best Practices 122

7 R Scripts 123
7.1 Creating R scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

8 Quarto Files 130
8.1 What is Quarto? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
8.2 Why use Quarto? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
8.3 Create a Quarto file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
8.4 YAML headers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
8.5 R code chunks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
8.6 Markdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

8.6.1 Markdown headings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
8.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

9 R Projects 143

10 Coding Best Practices 150
10.1 General principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
10.2 Code comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

10.2.1 Defining key variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
10.2.2 What this code is trying to accomplish . . . . . . . . . . . . . . . . . . . 152
10.2.3 Why we chose this particular strategy . . . . . . . . . . . . . . . . . . . 152

10.3 Style guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
10.3.1 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
10.3.2 Object (variable) names . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
10.3.3 Use names that are informative . . . . . . . . . . . . . . . . . . . . . . . 153
10.3.4 File Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

11 Using Pipes 158
11.1 What are pipes? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
11.2 How do pipes work? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

11.2.1 Keyboard shortcut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
11.2.2 Pipe style . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

11.3 Final thought on pipes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

4



III Data Transfer 169

12 Introduction to Data Transfer 170

13 File Paths 172
13.1 Finding file paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
13.2 Relative file paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

14 Importing Plain Text Files 187
14.1 Packages for importing data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
14.2 Importing space delimited files . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

14.2.1 Specifying missing data values . . . . . . . . . . . . . . . . . . . . . . . 191
14.3 Importing tab delimited files . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
14.4 Importing fixed width format files . . . . . . . . . . . . . . . . . . . . . . . . . 195

14.4.1 Vector of column widths . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
14.4.2 Paired vector of start and end positions . . . . . . . . . . . . . . . . . . 201
14.4.3 Using named arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

14.5 Importing comma separated values files . . . . . . . . . . . . . . . . . . . . . . 204
14.6 Additional arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

15 Importing Binary Files 214
15.1 Packages for importing data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
15.2 Importing Microsoft Excel spreadsheets . . . . . . . . . . . . . . . . . . . . . . 215
15.3 Importing data from other statistical analysis software . . . . . . . . . . . . . . 220
15.4 Importing SAS data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
15.5 Importing Stata data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

16 RStudio’s Data Import Tool 226

17 Exporting Data 232
17.1 Plain text files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
17.2 R binary files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

IV Descriptive Analysis 236

18 Introduction to Descriptive Analysis 237
18.1 What is descriptive analysis and why would we do it? . . . . . . . . . . . . . . 237
18.2 What kind of descriptive analysis should we perform? . . . . . . . . . . . . . . 237

19 Numerical Descriptions of Categorical Variables 240
19.1 Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

19.1.1 Coerce a numeric variable . . . . . . . . . . . . . . . . . . . . . . . . . . 246
19.1.2 Coerce a character variable . . . . . . . . . . . . . . . . . . . . . . . . . 250

5



19.2 Height and Weight Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
19.2.1 View the data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

19.3 Calculating frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
19.3.1 The base R table function . . . . . . . . . . . . . . . . . . . . . . . . . . 254
19.3.2 The gmodels CrossTable function . . . . . . . . . . . . . . . . . . . . . . 254
19.3.3 The tidyverse way . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

19.4 Calculating percentages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
19.5 Missing data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
19.6 Formatting results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
19.7 Using freqtables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

20 Measures of Central Tendency 265
20.1 Calculate the mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
20.2 Calculate the median . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
20.3 Calculate the mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
20.4 Compare mean, median, and mode . . . . . . . . . . . . . . . . . . . . . . . . . 273
20.5 Data checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
20.6 Properties of mean, median, and mode . . . . . . . . . . . . . . . . . . . . . . . 274
20.7 Missing data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
20.8 Using meantables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

21 Measures of Dispersion 280
21.1 Comparing distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

22 Describing the Relationship Between a Continuous Outcome and a Continuous
Predictor 299
22.1 Pearson Correlation Coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

22.1.1 Calculating r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
22.1.2 Correlation intuition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312

23 Describing the Relationship Between a Continuous Outcome and a Categorical
Predictor 320
23.1 Single predictor and single outcome . . . . . . . . . . . . . . . . . . . . . . . . . 323
23.2 Multiple predictors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326

24 Describing the Relationship Between a Categorical Outcome and a Categorical
Predictor 328
24.1 Comparing two variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

V Data Management 344

25 Introduction to Data Management 345
25.1 Multiple paradigms for data management in R . . . . . . . . . . . . . . . . . . 345

6



25.2 The dplyr package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346
25.2.1 The dplyr verbs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346
25.2.2 The .data argument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346
25.2.3 The … argument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
25.2.4 Non-standard evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 348

26 Creating and Modifying Columns 350
26.1 Creating data frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
26.2 Dollar sign notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
26.3 Bracket notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352
26.4 Modify individual values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354
26.5 The mutate() function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356

26.5.1 Adding or modifying a single column . . . . . . . . . . . . . . . . . . . . 360
26.5.2 Recycling rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
26.5.3 Using existing variables in name-value pairs . . . . . . . . . . . . . . . . 367
26.5.4 Adding or modifying multiple columns . . . . . . . . . . . . . . . . . . . 369
26.5.5 Rowwise mutations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
26.5.6 Group_by mutations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379

27 Subsetting Data Frames 383
27.1 The select() function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387
27.2 The rename() function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396
27.3 The filter() function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398

27.3.1 Subgroup analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399
27.3.2 Complete case analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403

27.4 Deduplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405
27.4.1 The distinct() function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407
27.4.2 Complete duplicate row add tag . . . . . . . . . . . . . . . . . . . . . . 407
27.4.3 Partial duplicate rows . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410
27.4.4 Partial duplicate rows - add tag . . . . . . . . . . . . . . . . . . . . . . . 410
27.4.5 Count the number of duplicates . . . . . . . . . . . . . . . . . . . . . . . 411
27.4.6 What to do about duplicates . . . . . . . . . . . . . . . . . . . . . . . . 412

28 Working with Dates 413
28.1 Date vector types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413
28.2 Dates under the hood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415
28.3 Coercing date-times to dates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418
28.4 Coercing character strings to dates . . . . . . . . . . . . . . . . . . . . . . . . . 419
28.5 Change the appearance of dates with format() . . . . . . . . . . . . . . . . . . . 424
28.6 Some useful built-in dates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425

28.6.1 Today’s date . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425
28.6.2 Today’s date-time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425
28.6.3 Character vector of full month names . . . . . . . . . . . . . . . . . . . 427

7



28.6.4 Character vector of abbreviated month names . . . . . . . . . . . . . . . 427
28.6.5 Creating a vector containing a sequence of dates . . . . . . . . . . . . . 428

28.7 Calculating date intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428
28.7.1 Calculate age as the difference in time between dob and today . . . . . 430
28.7.2 Rounding time intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . 434

28.8 Extracting out date parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436
28.9 Sorting dates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439

29 Working with Character Strings 441
29.1 Coerce to lowercase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444

29.1.1 Lowercase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444
29.1.2 Upper case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444
29.1.3 Title case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445
29.1.4 Sentence case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445

29.2 Trim white space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447
29.3 Regular expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448

29.3.1 Remove the comma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449
29.3.2 Remove middle initial . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450
29.3.3 Remove double spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453

29.4 Separate values into component parts . . . . . . . . . . . . . . . . . . . . . . . 458
29.5 Dummy variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462

30 Conditional Operations 466
30.1 Operands and operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472
30.2 Testing multiple conditions simultaneously . . . . . . . . . . . . . . . . . . . . . 478
30.3 Testing a sequence of conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 479
30.4 Recoding variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482
30.5 case_when() is lazy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487
30.6 Recode missing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489

31 Working with Multiple Data Frames 498
31.1 Combining data frames vertically: Adding rows . . . . . . . . . . . . . . . . . . 502

31.1.1 Combining more than 2 data frames . . . . . . . . . . . . . . . . . . . . 505
31.1.2 Adding rows with differing columns . . . . . . . . . . . . . . . . . . . . 505
31.1.3 Differing column positions . . . . . . . . . . . . . . . . . . . . . . . . . . 506
31.1.4 Differing column names . . . . . . . . . . . . . . . . . . . . . . . . . . . 507

31.2 Combining data frames horizontally: Adding columns . . . . . . . . . . . . . . 509
31.2.1 Combining data frames horizontally by position . . . . . . . . . . . . . . 511
31.2.2 Combining data frames horizontally by key values . . . . . . . . . . . . 513

32 Restructuring Data frames 535
32.1 The tidyr package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543

8



32.2 Pivoting longer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543
32.2.1 The names_to argument . . . . . . . . . . . . . . . . . . . . . . . . . . 547
32.2.2 The names_prefix argument . . . . . . . . . . . . . . . . . . . . . . . . 549
32.2.3 The values_to argument . . . . . . . . . . . . . . . . . . . . . . . . . . . 550
32.2.4 The names_transform argument . . . . . . . . . . . . . . . . . . . . . . 552
32.2.5 Pivoting multiple sets of columns . . . . . . . . . . . . . . . . . . . . . . 553
32.2.6 The names_sep argument . . . . . . . . . . . . . . . . . . . . . . . . . . 559
32.2.7 The .value special value . . . . . . . . . . . . . . . . . . . . . . . . . . . 561
32.2.8 Why person-period? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 564

32.3 Pivoting wider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565
32.3.1 Why person-level? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 567

32.4 Pivoting summary statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 568
32.4.1 Pivoting summary statistics wide to long . . . . . . . . . . . . . . . . . 568
32.4.2 Pivoting summary statistics long to wide . . . . . . . . . . . . . . . . . 571

32.5 Tidy data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573
32.5.1 Each variable must have its own column . . . . . . . . . . . . . . . . . . 574
32.5.2 Each observation must have its own row . . . . . . . . . . . . . . . . . . 576
32.5.3 Each value must have its own cell . . . . . . . . . . . . . . . . . . . . . . 578

32.6 The complete() function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 579

VI Repeated Operations 584

33 Introduction to Repeated Operations 585
33.1 Multiple methods for repeated operations in R . . . . . . . . . . . . . . . . . . 587
33.2 Tidy evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 588

34 Writing Functions 590
34.1 When to write functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 595
34.2 How to write functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 595

34.2.1 The function() function . . . . . . . . . . . . . . . . . . . . . . . . . . . 595
34.2.2 The function writing process . . . . . . . . . . . . . . . . . . . . . . . . 600

34.3 Giving your function arguments default values . . . . . . . . . . . . . . . . . . 611
34.4 The values your functions return . . . . . . . . . . . . . . . . . . . . . . . . . . 614
34.5 Lexical scoping and functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 618
34.6 Tidy evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 621

35 Column-wise Operations in dplyr 628
35.1 The across() function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 630
35.2 Across with mutate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 637
35.3 Across with summarise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 642
35.4 Across with filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 652
35.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 658

9



36 Writing For Loops 659
36.1 How to write for loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 662

36.1.1 The for loop body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 663
36.1.2 The for() function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 665

36.2 Using for loops for data transfer . . . . . . . . . . . . . . . . . . . . . . . . . . 687
36.3 Using for loops for data management . . . . . . . . . . . . . . . . . . . . . . . . 692
36.4 Using for loops for analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 699

37 Using the purrr Package 722
37.1 Comparing for loops and the map functions . . . . . . . . . . . . . . . . . . . . 726
37.2 Using purrr for data transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 734

37.2.1 Example 1: Importing multiple sheets from an Excel workbook . . . . . 734
37.2.2 Why walk instead of map? . . . . . . . . . . . . . . . . . . . . . . . . . 737
37.2.3 why we didn’t assign the return value of walk() to an object? . . . . . 740

37.3 Using purrr for data management . . . . . . . . . . . . . . . . . . . . . . . . . . 742
37.3.1 Example 1: Adding NA at multiple positions . . . . . . . . . . . . . . . 742
37.3.2 Example 2. Detecting matching values by position . . . . . . . . . . . . 754

37.4 Using purrr for analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 758
37.4.1 Example 1: Continuous statistics . . . . . . . . . . . . . . . . . . . . . . 759
37.4.2 Example 2: Categorical statistics . . . . . . . . . . . . . . . . . . . . . . 763

VII Collaboration 768

38 Introduction to git and GitHub 769
38.1 Versioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 770
38.2 Preservation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 773
38.3 Reproducibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 773
38.4 Collaboration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 774
38.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 774

39 Using git and GitHub 776
39.1 Install git . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 776
39.2 Sign up for a GitHub account . . . . . . . . . . . . . . . . . . . . . . . . . . . . 777
39.3 Install GitKraken . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 778
39.4 Example 1: Contribute to R4Epi . . . . . . . . . . . . . . . . . . . . . . . . . . 782
39.5 Example 2: Create a repository for a research project . . . . . . . . . . . . . . 782

Step 1: Create a repository on GitHub . . . . . . . . . . . . . . . . . . . . . . . 783
Step 2: Clone the repository to your computer . . . . . . . . . . . . . . . . . . 796
Step 3: Add an R project file to the repository . . . . . . . . . . . . . . . . . . 803
Step 4: Update and commit gitignore . . . . . . . . . . . . . . . . . . . . . . . 805
Step 5: Keep adding and committing files . . . . . . . . . . . . . . . . . . . . . 819

39.6 Committing and pushing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 824

10



39.7 Example 3: Contribute to a research project . . . . . . . . . . . . . . . . . . . . 824
39.7.1 Forking a repository . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 826
39.7.2 Creating a pull request . . . . . . . . . . . . . . . . . . . . . . . . . . . . 831

39.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 848

VIIIPresenting Results 850

40 Creating Tables with R and Microsoft Word 851
40.1 Table 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 851
40.2 Opioid drug use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 852
40.3 Table columns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 855
40.4 Table rows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 857
40.5 Make the table skeleton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 859
40.6 Fill in column headers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 859

40.6.1 Group sample sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 861
40.6.2 Formatting column headers . . . . . . . . . . . . . . . . . . . . . . . . . 861

40.7 Fill in row headers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 862
40.7.1 Label statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 863
40.7.2 Formatting row headers . . . . . . . . . . . . . . . . . . . . . . . . . . . 866

40.8 Fill in data values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 867
40.8.1 Manually type values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 867
40.8.2 Copy and paste values . . . . . . . . . . . . . . . . . . . . . . . . . . . . 868
40.8.3 Knit a Word document . . . . . . . . . . . . . . . . . . . . . . . . . . . 868
40.8.4 flextable and officer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 868
40.8.5 Significant digits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 869
40.8.6 Formatting data values . . . . . . . . . . . . . . . . . . . . . . . . . . . 870

40.9 Fill in title . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 871
40.10Fill in footnotes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 872

40.10.1Formatting footnotes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 873
40.11Final formatting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 875

40.11.1Adjust column widths . . . . . . . . . . . . . . . . . . . . . . . . . . . . 875
40.11.2Merge cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 876
40.11.3Remove cell borders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 876

40.12Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 877

IX References 878

41 References 879

11



Appendices 881

A Glossary 881

12



Welcome

Welcome to R for Epidemiology!

This electronic textbook was originally created to accompany the Introduction to R Program-
ming for Epidemiologic Research course at the University of Texas Health Science Center
School of Public Health. However, we hope it will be useful to anyone who is interested in R,
epidemiology, or human health and well-being.

Acknowledgements

This book is currently a work in progress (and probably always will be); however, there are
already many people who have played an important role (some unknowingly) in helping develop
it thus far. First, we’d like to offer our gratitude to all past, current, and future members of
the R Core Team for maintaining this amazing, free software. We’d also like to express our
gratitude to everyone at Posit. You are also developing and giving away some amazing software.
In particular, we’d like to acknowledge Garrett Grolemund and Hadley Wickham. Both have
had a huge impact on how we use and teach R. We’d also like to thank our students for all
the feedback they’ve given us while taking our courses. In particular, we want to thank Jared
Wiegand and Yiqun Wang for their many edits and suggestions.

This electronic textbook was created and published using R, RStudio, the Quarto, GitHub,
and Netlify.

13

https://sph.uth.edu/
https://sph.uth.edu/
https://posit.co/
https://www.linkedin.com/in/garrett-grolemund-49328411/
https://hadley.nz/
https://www.linkedin.com/in/jared-wiegand/
https://www.linkedin.com/in/jared-wiegand/
https://cran.r-project.org/
https://www.rstudio.com/
https://quarto.org/
https://github.com/
https://www.netlify.com/


Introduction

Goals

We’re going to start the introduction by writing down some basic goals that underlie the
construction and content of this book. We’re writing this for you, the reader, but also to hold
ourselves accountable as we write. So, feel free to read if you are interested or skip ahead if
you aren’t.

The goals of this book are:

1. To teach you how to use R and RStudio as tools for applied epidemiology.1
Our goal is not to teach you to be a computer scientist or an advanced R programmer.
Therefore, some readers who are experienced programmers may catch some technical
inaccuracies regarding what we consider to be the fine points of what R is doing “under
the hood.”

2. To make this writing as accessible and practically useful as possible without
stripping out all of the complexity that makes doing epidemiology in real
life a challenge. In other words, We’re going to try to give you all the tools you need
to do epidemiology in “real world” conditions (as opposed to ideal conditions) without
providing a whole bunch of extraneous (often theoretical) stuff that detracts from doing.
Having said that, we will strive to add links to the other (often theoretical) stuff for
readers who are interested.

3. To teach you to accomplish common tasks, rather than teach you to use functions
or families of functions. In many R courses and texts, there is a focus on learning all
the things a function, or set of related functions, can do. It’s then up to you, the reader,
to sift through all of these capabilities and decided which, if any, of the things that can
be done will accomplish the tasks that you are actually trying to accomplish. Instead,
we will strive to start with the end in mind. What is the task we are actually trying to
accomplish? What are some functions/methods we could use to accomplish that task?
What are the strengths and limitations of each?

1In this case, “tools for applied epidemiology” means (1) understanding epidemiologic concepts; and (2) com-
pleting and interpreting epidemiologic analyses.

14



4. To start each concept by showing you the end result and then deconstruct how
we arrived at that result, where possible. We find that it is easier for many people to
understand new concepts when learning them as a component of a final product.

5. To learn concepts with data instead of (or alongside) mathematical formulas and text
descriptions, where possible. We find that it is easier for many people to understand new
concepts by seeing them in action.

Text conventions used in this book

• We will hyperlink many keywords or phrases to their glossary entry.
• Additionally, we may use bold face for a word or phrase that we want to call attention

to, but it is not necessarily a keyword or phrase that we want to define in the glossary.
• Highlighted inline code is used to emphasize small sections of R code and program

elements such as variable or function names.

Other reading

If you are interested in R4Epi, you may also be interested in:

• Hands-on Programming with R by Garrett Grolemund. This book is designed to provide
a friendly introduction to the R language.

• R for Data Science by Hadley Wickham, Mine Çetinkaya-Rundel, and Garrett Grole-
mund. This book is designed to teach readers how to do data science with R.

• Statistical Inference via Data Science: A ModernDive into R and the Tidyverse. This
book is designed to be a gentle introduction to the practice of analyzing data and an-
swering questions using data the way data scientists, statisticians, data journalists, and
other researchers would.

• Reproducable Research with R and RStudio by Christopher Gandrud. This book gives
you tools for data gathering, analysis, and presentation of results so that you can create
dynamic and highly reproducible research.

• Advanced R by Hadley Wickham. This book is designed primarily for R users who want
to improve their programming skills and understanding of the language.

15

appendices/glossary.qmd
https://rstudio-education.github.io/hopr/
https://r4ds.hadley.nz/
https://moderndive.com/
http://christophergandrud.github.io/RepResR-RStudio/
https://adv-r.hadley.nz/


Contributing

Over the years, we have learned so much from our students and colleagues, and we anticipate
that there is much more we can learn from you – our readers. Therefore, we welcome and
appreciate all constructive contributions to R4Epi!

Typos

The easiest way for you to contribute is to help us clean up the little typos and grammatical
errors that inevitably sneak into the text.

If you spot a typo, you can offer a correction directly in GitHub. You will first need to create
a free GitHub account: sign-up at github.com. Later in the book, we will cover using GitHub
in greater depth in see Using-git-and-Github. Here, we’re just going to walk you through how
to fix a typo without much explanation of how GitHub works.

Let’s say you spot a typo while reading along.

Next, click the edit button in the toolbar as shown in the screenshot below.

The first time you click the icon, you will be taken to the R4Epi repository on GitHub and
asked to fork it. For our purposes, you can think of a GitHub repository as being similar to a
shared folder on Dropbox or Google Drive.

16

https://github.com/join
../using_git_github/using_git_github.qmd


“Forking the repository” basically just means “make a copy of the repository” on your GitHub
account. In other words, copy all of the files that make up the R4Epi textbook to your GitHub
account. Then, you can fix the typos you found in your copy of the files that make up the
book instead of directly editing the actual files that make up the book. This is a safeguard to
prevent people from accidentally making changes that shouldn’t be made.

Note

Forking the R4Epi repository does not cost any money or add any files to your computer.

After you fork the repository, you will see a text editor on your screen.

The text editor will display the contents of the file used to make the chapter you were looking
at when you clicked the edit button. In this example, it was a file named contributing.qmd.
The .qmd file extension means that the file is a Quarto/file. We will learn more about Quarto
files, but for now just know that Quarto/ files can be used to create web pages and other
documents that contain a mix of R code, text, and images.

17

../quarto_files/quarto_files.qmd
../quarto_files/quarto_files.qmd


Next, scroll down through the text until you find the typo and fix it. In this case, line 11
contains the word “typoo”. To fix it, you just need to click in the editor window and begin
typing. In this case, you would click next to the word “typoo” and delete the second “o”.

Now, the only thing left to do is propose your typo fix to the authors. To do so, click the green
Commit changes... button on the right side of the screen above the text editor (surrounded
with a red box in the screenshot above). When you click it, a new Propose changes box
will appear on your screen. Type a brief (i.e., 72 characters or less) summary of the change
you made in the Commit message box. There is also an Extended description box where
you can add a more detailed description of what you did. In the screenshot below, shows an
example commit message and extended description that will make it easy for the author to
quickly figure out exactly what changes are being proposed.

18



Next, click the Propose changes button. That will take you to another screen where you will
be able to create a pull request. This screen is kind of busy, but try not to let it overwhelm
you.

19



For now, we will focus on the three different sections of the screen that are highlighted with a
red outline. We will start at the bottom and work our way up. The red box that is closest to
the bottom of the screenshot shows us that the change that made was on line 11. The word
“typoo” (highlighted in red) was replaced with the word “typo” (highlighted in green). The
red box in the middle of the screenshot shows us the brief description that was written for our
proposed change – “Fix a typo in contributing.qmd”. Finally, the red box closest to the top
of the screenshot is surrounding the Create pull request button. You will click it to move
on with your pull request.

20



After doing so, you will get one final chance to amend the description of your proposed changes.
If you are happy with the commit message and description, then click the Create pull
request button one more time. At this point, your job is done! It is now up to the authors
to review the changes you’ve proposed and “pull” them into the file in their repository.

In case you are curious, here is what the process looks like on the authors’ end. First, when
we open the R4Epi repository page on GitHub, we will see that there is a new pull request.

When we open the pull request, we can see the proposed changes to the file.

21



Then, all we have to do is click the Merge pull request button and the fixed file is “pulled
in” to replace the file with the typo.

22



Issues

There may be times when you see a problem that you don’t know how to fix, but you still
want to make the authors aware of. In that case, you can create an issue in the R4Epi
repository. To do so, navigate to the issue tracker using this link: https://github.com/brad-
cannell/r4epi/issues.

23

https://github.com/brad-cannell/r4epi/issues
https://github.com/brad-cannell/r4epi/issues


Once there, you can check to see if someone has already raised the issue you are concerned
about. If not, you can click the green “New issue” button to raise it yourself.

Please note that R4Epi uses a Contributor Code of Conduct. By contributing to this book,
you agree to abide by its terms.

License Information

This book was created by Brad Cannell and is licensed under a Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License.

24

https://contributor-covenant.org/version/2/0/CODE_OF_CONDUCT.html


About the Authors

Brad Cannell

Michael (Brad) Cannell, PhD, MPH
Associate Professor
Elder Mistreatment Lead, UTHealth Institute of Aging
Director, Research Informatics Core, Cizik Nursing Research Institute
UTHealth Houston
McGovern Medical School
Joan and Stanford Alexander Division of Geriatric & Palliative Medicine
www.bradcannell.com

Dr. Cannell received his PhD in Epidemiology, and Graduate Certificate in Gerontology, in
2013 from the University of Florida. He received his MPH with a concentration in Epidemiology
from the University of Louisville in 2009, and his BA in Political Science and Marketing from
the University of North Texas in 2005. During his doctoral studies, he was a Graduate Research
Assistant for the Florida Office on Disability and Health, an affiliated scholar with the Claude
D. Pepper Older Americans Independence Center, and a student-inducted member of the
Delta Omega Honorary Society in Public Health. In 2016, Dr. Cannell received a Graduate
Certificate in Predictive Analytics from the University of Maryland University College, and a
Certificate in Big Data and Social Analytics from the Massachusetts Institute of Technology.

He previously held professional staff positions in the Louisville Metro Health Department
and the Northern Kentucky Independent District Health Department. He spent three years
as a project epidemiologist for the Florida Office on Disability and Health at the University
of Florida. He also served as an Environmental Science Officer in the United States Army
Reserves from 2009 to 2013.

Dr. Cannell’s research is broadly focused on healthy aging and health-related quality of life.
Specifically, he has published research focusing on preservation of physical and cognitive func-
tion, living and aging with disability, and understanding and preventing elder mistreatment.
Additionally, he has a strong background and training in epidemiologic methods and predictive
analytics. He has been principal or co-investigator on multiple trials and observational studies
in community and healthcare settings. He is currently the principal investigator on multiple
data-driven federally funded projects that utilize technological solutions to public health issues
in novel ways.

25

https://www.bradcannell.com


Contact
Connect with Dr. Cannell and follow his work.

Melvin Livingston

Melvin (Doug) Livingston, PhD
Research Associate Professor
Department of Behavioral, Social, and Health Education Sciences
Emory University Woodruff Health Sciences Center
Rollins School of Public Health
Dr. Livingston’s Faculty Profile

Dr. Livingston is a methodologist with expertise in the the application of quasi-experimental
design principals to the evaluation for both community interventions and state policies. He
has particular expertise in time series modeling, mixed effects modeling, econometric methods,
and power analysis. As part of his work involving community trials, he has been the statisti-
cian on the long term follow-up study of a school based cluster randomized trial in low-income
communities with a focus on explaining the etiology of risky alcohol, drug, and sexual be-
haviors. Additionally, he was the statistician for a longitudinal study examining the etiology
of alcohol use among racially diverse and economically disadvantaged urban youth, and co-
investigator for a NIAAA- and NIDA-funded trial to prevent alcohol use and alcohol-related
problems among youth living in high-risk, low-income communities within the Cherokee Na-
tion. Prevention work at the community level led him to an interest in the impact of state
and federal socioeconomic policies on health outcomes. He is a Co-Investigator of a 50-state,
30-year study of effects of state-level economic and education policies on a diverse set of public
health outcomes, explicitly examining differential effects across disadvantaged subgroups of
the population.

His current research interests center around the application of quasi-experimental design and
econometric methods to the evaluation of the health effects of state and federal policy.

Contact
Connect with Dr. Livingston and follow his work.

26

https://sph.emory.edu/faculty/profile/index.php?FID=melvin-livingston-8970


Part I

Getting Started

27



1 Installing R and RStudio

Before we can do any programming with R, we first have to download it to our computer.
Fortunately, R is free, easy to install, and runs on all major operating systems (i.e., Mac and
Windows). However, R is even easier to use as when we combine it with another program
called RStudio. Fortunately, RStudio is also free and will also run on all major operating
systems.

At this point, you may be wondering what R is, what RStudio is, and how they are related. We
will answer those questions in the near future. However, in the interest of keeping things brief
and simple, We’re not going to get into them right now. Instead, all you have to worry about
is getting the R programming language and the RStudio IDE (IDE is short for integrated
development environment) downloaded and installed on your computer. The steps involved
are slightly different depending on whether you are using a Mac or a PC (i.e., Windows).
Therefore, please feel free to use the table of contents on the right-hand side of the screen to
navigate directly to the instructions that you need for your computer.

Note

In this chapter, we cover how to download and install R and RStudio on both Mac and
PC. However, the screenshots in all following chapters will be from a Mac. The good
news is that RStudio operates almost identically on Mac and PC.

Step 1: Regardless of which operating system you are using, please make sure your computer
is on, properly functioning, connected to the internet, and has enough space on your hard
drive to save R and RStudio.

1.1 Download and install on a Mac

Step 2: Navigate to the Comprehensive R Archive Network (CRAN), which is located at
https://cran.r-project.org/.

28



Step 3: Click on Download R for macOS.

Step 4: Click on the link for the latest version of R. As you are reading this, the newest
version may be different than the version you see in this picture, but the location of the newest
version should be roughly in the same place – the middle of the screen under “Latest release:”.
After clicking the link, R should start to download to your computer automatically.

29



Step 5: Locate the package file you just downloaded and double click it. Unless you’ve
changed your download settings, this file will probably be in your “downloads” folder. That
is the default location for most web browsers. After you locate the file, just double click it.

Step 6: A dialogue box will open and ask you to make some decisions about how and where
you want to install R on your computer. We typically just click “continue” at every step

30



without changing any of the default options.

If R installed properly, you should now see it in your applications folder.

Step 7: Now, we need to install the RStudio IDE. To do this, navigate to the RStudio desktop
download website, which is located at https://posit.co/download/rstudio-desktop/. On that

31



page, click the button to download the latest version of RStudio for your computer. Note that
the website may look different that what you see in the screenshot below because websites
change over time.

Step 8: Again, locate the DMG file you just downloaded and double click it. Unless you’ve
changed your download settings, this file should be in the same location as the R package file
you already downloaded.

32



Step 9: A new finder window should automatically pop up that looks like the one you see
below. Click on the RStudio icon and drag it into the Applications folder.

You should now see RStudio in your Applications folder. Double click the icon to open RStu-
dio.

33



If this warning pops up, just click Open.

The RStudio IDE should open and look something like the window you see here. If so, you
are good to go! �

34



1.2 Download and install on a PC

Step 2: Navigate to the Comprehensive R Archive Network (CRAN), which is located at
https://cran.r-project.org/.

35



Step 3: Click on Download R for Windows.

Step 4: Click on the base link.

36



Step 5: Click on the link for the latest version of R. As you are reading this, the newest version
may be different than the version you see in this picture, but the location of the newest version
should be roughly the same. After clicking, R should start to download to your computer.

Step 6: Locate the installation file you just downloaded and double click it. Unless you’ve
changed your download settings, this file will probably be in your downloads folder. That is

37



the default location for most web browsers.

Step 7: A dialogue box will open that asks you to make some decisions about how and where
you want to install R on your computer. We typically just click “Next” at every step without
changing any of the default options.

38



If R installed properly, you should now see it in the Windows start menu.

Step 8: Now, we need to install the RStudio IDE. To do this, navigate to the RStudio desktop
download website, which is located at https://posit.co/download/rstudio-desktop/. On that
page, click the button to download the latest version of RStudio for your computer. Note that
the website may look different that what you see in the screenshot below because websites
change over time.

39



Step 9: Again, locate the installation file you just downloaded and double click it. Unless
you’ve changed your download settings, this file should be in the same location as the R
installation file you already downloaded.

40



Step 10: Another dialogue box will open and ask you to make some decisions about how and
where you want to install RStudio on your computer. We typically just click “Next” at every
step without changing any of the default options.

When RStudio is finished installing, you should see RStudio in the Windows start menu. Click
the icon to open RStudio.

41



The RStudio IDE should open and look something like the window you see here. If so, you
are good to go! �

42



2 What is R?

At this point in the book, you should have installed R and RStudio on your computer, but you
may be thinking to yourself, “I don’t even know what R is.” Well, in this chapter you’ll find
out. We’ll start with an overview of the R language, and then briefly touch on its capabilities
and uses. You’ll also see a complete R program and some complete documents generated by
R programs. In this book you’ll learn how to create similar programs and documents, and by
the end of the book you’ll be able to write your own R programs and present your results in
the form of an issue brief written for general audiences who may or may not have public health
expertise. But, before we discuss R let’s discuss something even more basic – data. Here’s a
question for you: What is data?

2.1 What is data?

Data is information about objects (e.g., people, places, schools) and observable phenomenon
(e.g., weather, temperatures, and disease symptoms) that is recorded and stored somehow
as a collection of symbols, numbers, and letters. So, data is just information that has been
“written” down.

Here we have a table, which is a common way of organizing data. In R, we will typically refer
to these tables as data frames.

43



Each box in a data frame is called a cell.

Moving from left to right across the data frame are columns. Columns are also sometimes
referred to as variables. In this book, we will often use the terms columns and variables
interchangeably. Each column in a data frame has one, and only one, type. For now, know

44



that the type tells us what kind of data is contained in a column and what we can do with
that data. You may have already noticed that 3 of the columns in the table we’ve been looking
at contain numbers and 1 of the columns contains words. These columns will have different
types in R and we can do different things with them based on their type. For example, we
could ask R to tell us what the average value of the numbers in the height column are, but it
wouldn’t make sense to ask R to tell us the average value of the words in the Gender column.
We will talk more about many of the different column types exist in R later in this book.

The information contained in the first cell of each column is called the column name (or
variable) name.

R gives us a lot of flexibility in terms of what we can name our columns, but there are a few
rules.

1. Column names can contain letters, numbers and the dot (.) or underscore (_) characters.

2. Additionally, they can begin with a letter or a dot – as long as the dot is not followed
by a number. So, a name like “.2cats” is not allowed.

3. Finally, R has some reserved words that you are not allowed to use for column names.
These include: “if”, “else”, “repeat”, “while”, “function”, “for”, “in”, “next”, and
“break”.

45



Moving from top to bottom across the table are rows, which are sometimes referred to as
records.

Finally, the contents of each cell are called values.

46



We should now be up to speed on some basic terminology used by R, as well as other analytic,
database, and spreadsheet programs. These terms will be used repeatedly throughout the
book.

47



2.2 What is R?

So, what is R? Well, R is an open source statistical programming language that was created
in the 1990’s specifically for data analysis. We will talk more about what open source means
later, but for now, just think of R as an easy (relatively �) way to ask our computer to do
math and statistics for us. More specifically, by the end of this book we will be able to
independently use R to transfer data, manage data, analyze data, and present the results of
our analysis. Let’s quickly take a closer look at each of these.

48



2.2.1 Transferring data

So, what do we mean by “transfer data”? Well, individuals and organizations store their data

49



using different computer programs that use different file types. Some common examples that
we may come across in epidemiology are database files, spreadsheets, raw data files, and SAS
data sets. No matter how the data is stored, we can’t do anything with it until we can get it
into R, in a form that R can use, and in a location that R can access.

2.2.2 Managing data

This isn’t very specific, but managing data is all the things we may have to do to our data to
get it ready for analysis. Some people also refer to this process as “data wrangling” or “data
munging.” Some specific examples of data management tasks include:

• Validating and cleaning data. In other words, dealing with potential errors in the data.

• Subsetting data – using only some of the columns or some of the rows.

• Creating new variables. For example, we might want to create a new BMI variable from
existing height and weight variables.

• Combining data frames. For example, we might want to combine a data frame con-
taining sociodemographic data about study participants with a data frame containing
intervention outcomes data about those same participants.

50



We may sometimes hear people refer to the 80/20 rule about data management. This “rule”
says that in a typical data analysis project, roughly 80% of our time will be spent on data
management, while only 20% will be spent on the analysis itself. We can’t provide you with
any empirical evidence (i.e., data) to back this claim up. But as people who have been involved
in many projects that involve the collection and analysis of data, we can tell you anecdotally
that this ”rule” is probably pretty close to being accurate in most cases.

Additionally, it’s been our experience that most students of epidemiology are required to take
one or more courses that emphasize methods for analyzing data; however, almost none of them
have taken a course that emphasizes data management.

Therefore, because data management is such a large component of most projects that involve
the collection and analysis of data, and because most readers will have already been exposed to
data analysis to a much greater extent than data management, this book will start by heavily
emphasizing the latter.

2.2.3 Analyzing data

As discussed above, this is probably the capability most people most closely associate with R,
and there is no doubt that R is a powerful tool for analyzing data. However, in this book we
won’t go beyond using R to calculate basic descriptive statistics. For our purposes, descriptive
statistics include:

51



• Measures of central tendency. For example, mean, median, and mode.

• Measures of dispersion. For example, variance and standard error.

• Measures for describing categorical variables. For example, counts and percentages.

• Describing data using graphs and charts. With R, we can describe our data using
beautiful and informative graphs.

2.2.4 Presenting data

And finally, the ultimate goal is typically to present our findings in some form or another. For
example, a report, a website, or a journal article. With R we can present our results in many
different formats with relative ease. In fact, this is one of our favorite things about R and
RStudio. In this book we will learn how to publish our text, tabular, or graphical results in
many different formats including Microsoft Word documents, html files that can be viewed in
web browsers, and pdf documents. Let’s take a look at some examples.

1. Microsoft Word documents: Click here to view an example Word document created
with R and the officedown package.

2. PDF documents: Click here to view a gallery of documents, including PDF.

52

https://www.r-graph-gallery.com/
https://ardata-fr.github.io/officeverse/officedown-for-word.html
https://rmarkdown.rstudio.com/gallery.html


3. HTML files: HTML (HyperText Markup Language) is the standard format for web
pages. R can create HTML files that can be shared via email or published online for
others to view in their browser. Click here to browse a gallery of interactive dashboards
built with R.

4. Web applications: R can even be used to build full-featured web applications. Click
here to explore examples created with the Shiny package.

Now that we’ve explored what R is and how it can be used in public health and the health
sciences, it’s time to start learning how to actually use it. In the next chapter, Navigating the
RStudio Interface, we’ll begin by exploring the RStudio IDE and briefly introduce some of the
basic building blocks of R code.

53

https://rstudio.github.io/flexdashboard/articles/examples.html
https://shiny.rstudio.com/gallery/
https://shiny.rstudio.com/gallery/


3 Navigating the RStudio Interface

If you followed along with the previous chapters, you have R and RStudio installed on your
computer and you have some idea of what R and RStudio are. At this point, it can be common
for people to open RStudio and get totally overwhelmed. “What am I looking at?” ”What
do I click first?” “Where do I even start?” Don’t worry if these, or similar, thoughts have
crossed your mind. You are in good company and we will start to clear some of them up in
this chapter.

When we load RStudio, we should see a screen that looks very similar to Figure 3.1 below.
There, we see three panes, and each pane has multiple tabs.

Figure 3.1: The default RStudio user interface.

54



3.1 The console pane

The first pane we are going to talk about is the console/terminal/background jobs pane.

Figure 3.2: The R Console.

It’s called the “console/terminal/background jobs” pane because it has three tabs we can click
on by default: “console”, “terminal”, and “background jobs”. However, we will refer to this
pane as the “console pane” and will mostly ignore the terminal and background jobs tabs
for now. We aren’t ignoring them because they aren’t useful; instead, we are ignoring them
because using them isn’t essential for anything we will discuss in this chapter, and we want to
keep things as simple as possible for now.

The console is the most basic way to interact with R. We can type a command to R into the
console prompt (the prompt looks like “>”) and R will respond to what we type. For example,
below we typed “1 + 1,” pressed the return/enter key, and the R console returned the sum of
the numbers 1 and 1.

The number 1 we see in brackets before the 2 (i.e., [1]) is telling us that this line of results
starts with the first result. That fact is obvious here because there is only one result. So, let’s
look at a result that spans multiple lines to make this idea clearer.

In Figure 3.4 we see examples of a couple of new concepts that are worth discussing.

55



Figure 3.3: Doing some addition in the R console.

56



Figure 3.4: Demonstrating a function that returns multiple results.

57



First, as promised, we have more than one line of results (or output). The first line of results
starts with a 1 in brackets (i.e., [1]), which indicates that this line of results starts with the
first result. In this case, the first result is the number 2. The second line of results starts with
a 33 in brackets (i.e., [33]), which indicates that this line of results starts with the thirty-third
result. In this case, the thirty-third result is the number 66. If we count the numbers in the
first line, there should be 32 – results 1 through 32. We also want to make it clear that [1]
and [33] are NOT results themselves. They are just helping us count the number of results
per line.

The second new thing that you may have noticed in Figure 3.4 is our use of a function.
Functions are a BIG DEAL in R. So much so that R is called a functional language. We
don’t really need to know all the details of what that means; however, we should know that, in
general, everything we do in R we will do with a function. By contrast, everything we create in
R will be an object. If we wanted to make an analogy between the R language and the English
language, we could think of functions as verbs – they do things – and objects as nouns – they
are things. This distinction likely seems abstract and confusing at the moment, but we will
make it more concrete soon.

Most functions in R begin with the function name followed by parentheses. For example,
seq(), sum(), and mean().

Question: What is the name of the function we used in the example above?

Answer: We used the seq() function – short for sequence - in the example above.

You may notice that there are three pairs of words, equal symbols, and numbers that are
separated by commas inside the seq() function. They are, from = 2, to = 100, and by =
2. The words from, to, and by are all arguments to the seq() function. We will learn more
about functions and arguments later. For now, just know that arguments give functions the
information they need to give us the result we want.

In this case, the seq() function returns a sequence of numbers. But first, we had to give it
information about where that sequence should start, where it should end, and how many steps
should be in the middle. Above, the sequence began with the value we passed to the from
argument (i.e., 2), it ended with the value we passed to the to argument (i.e., 100), and it
increased at each step by the number we passed to the by argument (i.e., 2). So, 2, 4, 6, 8 …
100.

Whether you realize it or not, we’ve covered some important programming terms while dis-
cussing the seq() function above. Before we move on to discussing RStudio’s other panes,
let’s quickly review and reinforce a few of terms we will use repeatedly in this book.

• Arguments: Arguments always live inside the parentheses of R functions and receive
information the function needs to generate the result we want.

58



• Pass: In programming lingo, we pass a value to a function argument. For example, in the
function call seq(from = 2, to = 100, by = 2) we could say that we passed a value
of 2 to the from argument, we passed a value of 100 to the to argument, and we passed
a value of 2 to the by argument.

• Return: Instead of saying, “the seq() function gives us a sequence of numbers…” we say,
“the seq() function returns a sequence of numbers…” In programming lingo, functions
return one or more results.

Note

The seq() function isn’t particularly important or noteworthy. We essentially chose it
at random to illustrate some key points. However, arguments, passing values, and return
values are extremely important concepts and we will return to them many times.

3.2 The environment pane

The second pane we are going to talk about is the environment/history/connections pane in
Figure 3.5. However, we will mostly refer to it as the environment pane and we will mostly
ignore the history and connections tab. We aren’t ignoring them because they aren’t useful;
rather, we are ignoring them because using them isn’t essential for anything we will discuss
anytime soon, and we want to keep things as simple as possible.

The Environment pane shows you all the objects that R can currently use for data manage-
ment or analysis. In this picture, Figure 3.5 our environment is empty. Let’s create an object
and add it to our environment.

Here we see that we created a new object called x, which now appears in our Global Envi-
ronment. Figure 3.6 This gives us another great opportunity to discuss some new concepts.

First, we created the x object in the console by assigning the value 2 to the letter x. We did
this by typing “x” followed by a less than symbol (<), a dash symbol (-), and the number 2.
R is kind of unique in this way. We have never seen another programming language (although
I’m sure they are out there) that uses <- to assign values to variables. By the way, <- is called
the assignment operator (or assignment arrow), and ”assign” here means “make x contain 2”
or “put 2 inside x.”

In many other languages you would write that as x = 2. But, for whatever reason, in R it
is <-. Unfortunately, <- is more awkward to type than =. Fortunately, RStudio gives us a
keyboard shortcut to make it easier. To type the assignment operator in RStudio, just hold
down Option + - (dash key) on a Mac or Alt + - (dash key) on a PC and RStudio will insert
<- complete with spaces on either side of the arrow. This may still seem awkward at first, but
you will get used to it.

59



Figure 3.5: The environment pane

60



Figure 3.6: The vector x in the global environment.

61



Note

A note about using the letter “x”: By convention, the letter “x” is a widely used variable
name. You will see it used a lot in example documents and online. However, there is
nothing special about the letter x. We could have just as easily used any other letter (a
<- 2), word (variable <- 2), or descriptive name (my_favorite_number <- 2) that is
allowed by R.

Second, you can see that our Global Environment now includes the object x, which has a value
of 2. In this case, we would say that x is a numeric vector of length 1 (i.e., it has one value
stored in it). We will talk more about vectors and vector types soon. For now, just notice that
objects that you can manipulate or analyze in R will appear in your Global Environment.

Warning

R is a case-sensitive language. That means that uppercase x (X) and lowercase x (x)
are different things to R. So, if we assign 2 to lower case x (x <- 2), and then later ask
R to tell us what number we stored in uppercase X, we will get an error (Error: object
'X' not found).

3.3 The files pane

Next, let’s talk about the Files/Plots/Packages/Help/Viewer pane (that’s a mouthful). Fig-
ure 3.7

Again, some of these tabs are more applicable for us than others. For us, the files tab and
the help tab will probably be the most useful. You can think of the files tab as a mini Finder
window (for Mac) or a mini File Explorer window (for PC). The help tab is also extremely
useful once you get acclimated to it.

For example, in the screenshot above Figure 3.8 we typed the seq into the search bar. The
help pane then shows us a page of documentation for the seq() function. The documentation
includes a brief description of what the function does, outlines all the arguments the seq()
function recognizes, and, if you scroll down, gives examples of using the seq() function. Ad-
mittedly, this help documentation can seem a little like reading Greek (assuming you don’t
speak Greek) at first. But, you will get more comfortable using it with practice. We hated
the help documentation when we were learning R. Now, we use it all the time.

62



Figure 3.7: The Files/Plots/Packages/Help/Viewer pane.

63



Figure 3.8: The help tab.

64



3.4 The source pane

There is actually a fourth pane available in RStudio. If you click on the icon shown below you
will get the following dropdown box with a list of files you can create. Figure 3.9

Figure 3.9: Click the new source file icon.

If you click any of these options, a new pane will appear. We will arbitrarily pick the first
option – R Script.

When we do, a new pane appears. It’s called the source pane. In this case, the source
pane contains an untitled R Script. We won’t get into the details now because we don’t want
to overwhelm you, but soon you will do the majority of your R programming in the source
pane.

3.5 RStudio preferences

Finally, We’re going to recommend that you change a few settings in RStudio before we move
on. Start by clicking Tools, and then Global Options in RStudio’s menu bar, which probably
runs horizontally across the top of your computer’s screen.

65



Figure 3.10: New source file options.

66



Figure 3.11: A blank R script in the source pane.

67



Figure 3.12: Select the preferences menu on Mac.

68



In the General tab, we recommend turning off the Restore .Rdata into workspace at
startup option. We also recommend setting the Save workspace .Rdata on exit dropdown
to Never. Finally, we recommend turning off the Always save history (even when not
saving .Rdata) option.

Figure 3.13: General options tab.

We change our editor theme to Twilight in the Appearance tab. We aren’t necessarily recom-
mending that you change your theme – this is entirely personal preference – we’re just letting
you know why our screenshots will look different from here on out.

It’s likely that you still have lots of questions at this point. That’s totally natural. However,
we hope you now feel like you have some idea of what you are looking at when you open
RStudio. Most of you will naturally get more comfortable with RStudio as we move through
the book. For those of you who want more resources now, here are some suggestions.

1. RStudio IDE cheatsheet

2. ModernDive: What are R and RStudio?

69

https://rstudio.com/resources/cheatsheets/
https://moderndive.com/1-getting-started.html#r-rstudio


Figure 3.14: Appearance tab.

70



4 Speaking R’s Language

It has been our experience that students often come into statistical programming courses
thinking they will be heavy in math or statistics. In reality, our R courses are probably
much closer to a foreign language course. There is no doubt that we need a foundational
understanding of math and statistics to understand the results we get from R, but R will take
care of most of the complicated stuff for us. We only need to learn how to ask R to do what
we want it to do. To some extent, this entire book is about learning to communicate with R,
but in this chapter we will briefly introduce the R programming language from the 30,000-foot
level.

4.1 R is a language

In the same way that many people use the English language to communicate with each other,
we will use the R programming language to communicate with R. Just like the English language,
the R language comes complete with its own structure and vocabulary. Unfortunately, just like
the English language, it also includes some weird exceptions and occasional miscommunications.
We’ve already seen a couple examples of commands written to R in the R programming
language. Specifically:

# Store the value 2 in the variable x
x <- 2
# Print the contents of x to the screen
x

[1] 2

and

# Print an example number sequence to the screen
seq(from = 2, to = 100, by = 2)

[1] 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38
[20] 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76
[39] 78 80 82 84 86 88 90 92 94 96 98 100

71



Note

The gray boxes you see above are called R code chunks and we created them (and this
entire book) using something called Quarto files. Can you believe that you can write an
entire book with R and RStudio? How cool is that? You will learn to use Quarto files
later in this book. Quarto is great because it allows you to mix R code with narrative
text and multimedia content as we’ve done throughout the page you’re currently looking
at. This makes it really easy for us to add context and aesthetic appeal to our results.

4.2 The R interpreter

Question: We keep talking about “speaking” to R, but when we speak to R using the R
language, who are we actually speaking to?

Well, we are speaking to something called the R interpreter. The R interpreter takes the
commands we’ve written in the R language, sends them to our computer to do the actual work
(e.g., get the mean of a set of numbers), and then translates the results of that work back to
us in a form that we humans can understand (e.g., the mean is 25.5). At this stage, one of
the key concepts for us to understand about the R language is that it is extremely literal!
Understanding the literal nature of R is important because it will be the underlying cause of
a lot of the errors in our R code.

4.3 Errors

It’s inevitable: errors will happen in your R code. Even experienced programmers who have
been working with R for many years get errors when they write code. The goal of this section
is to help us begin to understand why errors happen, and to give us a shared language for
talking about them.

So, what exactly do we mean when we say that the R interpreter is extremely literal? In the
previous lesson, we learned that R is a case-sensitive language. That means that uppercase
X and lowercase x are treated as two completely different objects.

For example, if we assign the value 2 to lowercase x using x <- 2, and then later ask R to
show us the contents of uppercase X, we’ll get an error (Error: object 'X' not found):

x <- 2
X

Error: object 'X' not found

72

https://Quarto.org/


Specifically, this is an example of a logic error. Meaning, R understands what we are asking
it to do – we want it to print the contents of the uppercase X object to the screen. However,
it can’t complete our request because we are asking it to do something that doesn’t logically
make sense – print the contents of a thing that doesn’t exist. Remember, R is literal and it
will not try to guess that we actually meant to ask it to print the contents of lowercase x.

Another general type of error is known as a syntax error. In programming languages, syntax
refers to the rules of the language. We can sort of think of syntax as the grammar of the
language. In English, we could say something like, “giving dog water drink.” This sentence
is grammatically incorrect; however, many people would roughly be able to figure out what’s
being asked based on their life experience and knowledge of the situational context. The R
interpreter, as awesome as it is, would not be able to make an assumption about what we want
it to do. In this case, the R interpreter would say, “I don’t know what you’re asking me to
do.” When the R interpreter says, “I don’t know what you’re asking me to do,” we’ve made a
syntax error.

Throughout the rest of the book, we will try to point out situations where R programmers
often encounter errors and how we may be able to address them. The remainder of this chapter
will discuss some key components of R’s syntax and the data structures (i.e., ways of storing
data) that the R syntax interacts with.

4.4 Functions

R is a functional programming language, which simply means that functions play a central
role in the R language. But what are functions? Well, factories are a common analogy used
to represent functions. In this analogy, arguments are raw material inputs that go into the
factory. For example, steel and rubber. The function is the factory where all the work takes
place – converting raw materials into the desired output. Finally, the factory output represents
the returned results. In this case, bicycles.

73

https://en.wikipedia.org/wiki/Functional_programming


Figure 4.1: A factory making bicycles.

To make this concept more concrete, in Chapter 3 we used the seq() function as a factory.
Specifically, we wrote seq(from = 2, to = 100, by = 2). The inputs (arguments) were
from, to, and by. The output (returned result) was a set of numbers that went from 2 to
100 by 2’s. Most functions, like the seq() function, will be a word or word part followed by
parentheses. Other examples are the sum() function for addition and the mean() function to
calculate the average value of a set of numbers.

74



Figure 4.2: A function factory making numbers.

4.4.1 Passing values to function arguments

When we supply a value to a function argument, that is called “passing” a value to the
argument. Let’s take another look at the sequence function we previously wrote and use it to
help us with this discussion.

# Create a sequence of numbers beginning at 2 and ending at 100, incremented by 2.
seq(from = 2, to = 100, by = 2)

[1] 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38
[20] 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76
[39] 78 80 82 84 86 88 90 92 94 96 98 100

In the code above, we passed the value 2 to the from argument, we passed the value 100 to
the to argument, and we passed the value 2 to the by argument. How do we know we passed
the value 2 to the from argument? We know because we wrote from = 2. To R, this means
“pass the value 2 to the from argument,” and it is an example of passing a value by name.
Alternatively, we could have also gotten the same result if we had passed the same values to
the seq() function by position. What does that mean? We’ll explain, but first take a look at
the following R code.

75



# Create a sequence of numbers beginning at 2 and ending at 100, incremented by 2.
seq(2, 100, 2)

[1] 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38
[20] 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76
[39] 78 80 82 84 86 88 90 92 94 96 98 100

How is code different from the code chunk before it? You got it! We didn’t explicitly write the
names of the function arguments inside of the seq() function. So, how did we get the same
results? We got the same results because R allows us to pass values to function arguments by
name or by position. When we pass values to a function by position, R will pass the first input
value to the first function argument, the second input value to the second function argument,
the third input value to the third function argument, and so on.

But how do we know what the first, second, and third arguments to a function are? Do
you remember our discussion about RStudio’s help tab in Section 3.3? There, we saw the
documentation for the seq() function.

Figure 4.3: The help tab.

In the “Usage” section of the documentation for the seq() function, we can see that all of
the arguments that the seq() function accepts. These documentation files are a little cryptic

76



until you get used to them but look directly underneath the part that says “## Default S3
method.” There, it tells us that the seq() function understands the from, to, by, length.out,
along.with, and ... arguments. The from argument is first argument to the seq() function
because it is listed there first, the to argument is second argument to the seq() function
because it is listed there second, and so on. It is really that simple. Therefore, when we type
seq(2, 100, 2), R automatically translates it to seq(from = 2, to = 100, by = 2). And
this is called passing values to function arguments by position.

Note

As an aside, we can view the documentation for any function by typing ?function name
into the R console and then pressing the enter/return key. For example, we can type
?seq to view the documentation for the seq() function.

Passing values to our functions by position has the benefit of making our code more compact,
we don’t have to write out all the function names. But, as you might have already guessed,
passing values to our functions by position also has some potential risks. First, it makes our
code harder to read. If we give our code to someone who has never used the seq() function
before, they will have to guess (or look up) what purpose 2, 100, and 2 serve. When we pass
the values to the function by name, their purpose is typically easier to figure out even if we’ve
never used a particular function before. The second, and potentially more important, risk is
that we may accidentally pass a value to a different argument than the one we intended. For
example, what if we mistakenly think the order of the arguments to the seq() function is from.
by, to? In that case, we might write the following code:

# Create a sequence of numbers beginning at 2 and ending at 100, incremented by 2.
seq(2, 2, 100)

[1] 2

Notice that R still gives us a result, but it isn’t the result we want! What happened? Well,
we passed the values 2, 2, and 100 to the seq() function by position, which R translated to
seq(from = 2, to = 2, by = 100) because from is the first argument in the seq() function,
to is the second argument in the seq() function, and by is the third argument in the seq()
function.

Quick review: is this an example of a syntax error or a logic error?

This is a logic error. We used perfectly valid R syntax in the code above, but we mistakenly
asked R to do something different than we actually wanted it to do. In this simple example,
it’s easy to see that this result is very different than what we were expecting and try to figure
out what we did wrong. But that won’t always be the case. Therefore, we need to be really
careful when passing values to function arguments by position.

77



One final note on passing values to functions. When we pass values to R functions by name,
we can pass them in any order we want. For example:

# Create a sequence of numbers beginning at 2 and ending at 100, incremented by 2.
seq(from = 2, to = 100, by = 2)

[1] 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38
[20] 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76
[39] 78 80 82 84 86 88 90 92 94 96 98 100

and

# Create a sequence of numbers beginning at 2 and ending at 100, incremented by 2.
seq(to = 100, by = 2, from = 2)

[1] 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38
[20] 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76
[39] 78 80 82 84 86 88 90 92 94 96 98 100

return the exact same values. Why? Because we explicitly told R which argument to pass
each value to by name. Of course, just because we can do something doesn’t mean we should
do it. We really shouldn’t rearrange argument order like this unless there is a good reason.

4.5 Objects

In addition to functions, the R programming language also includes objects. In the Navigating
RStudio chapter we created an object called x with a value of 2 using the x <- 2 R code. In
general, you can think of objects as anything that lives in your R global environment. Objects
may be single variables (also called vectors in R) or entire data sets (also called data frames
in R).

Objects can be a confusing concept at first. We think it’s because it is hard to precisely define
exactly what an object is. We’ll say two things about this. First, you’re probably overthinking
it (because we’ve overthought it too). When we use R, we create and save stuff. We have to
call that stuff something in order to talk about it or write books about it. Somebody decided
we would call that stuff “objects.” The second thing we’ll say is that this becomes much less
abstract when we finally get to a place where you can really get your hands dirty doing some
R programming.

78



Figure 4.4: Creating the x object.

Sometimes it can be useful to relate the R language to English grammar. That is, when you
are writing R code you can roughly think of functions as verbs and objects as nouns. Just like
nouns are things in the English language, and verbs do things in the English language, objects
are things and functions do things in the R language.

So, in the x <- 2 command x is the object and <- is the function. “Wait! Didn’t you just
tell us that functions will be a word followed by parentheses?” Fair question. Technically, we
said, “Most functions will be a word, or word part, followed by parentheses.” Just like English,
R has exceptions. All operators in R are also functions. Operators are symbols like +, -, =,
and <-. There are many more operators, but you will notice that they all do things. In this
case, they add, subtract, and assign values to objects.

79



4.6 Comments

And finally, there are comments. If our R code is a conversation we are having with the
R interpreter, then comments are your inner thoughts taking place during the conversation.
Comments don’t actually mean anything to R, but they will be extremely important for you.
You actually already saw a couple examples of comments above.

# Store the value 2 in the variable x
x <- 2
# Print the contents of x to the screen
x

[1] 2

In this code chunk, “# Store the value 2 in the variable x” and “# Print the contents of x to
the screen” are both examples of comments. Notice that they both start with the pound or
hash sign (#). The R interpreter will ignore anything on the current line that comes after the
hash sign. A carriage return (new line) ends the comment. However, comments don’t have to
be written on their own line. They can also be written on the same line as R code as long as
put them after the R code, like this:

80



x <- 2 # Store the value 2 in the variable x
x # Print the contents of x to the screen

[1] 2

Most beginning R programmers underestimate the importance of comments. In the silly little
examples above, the comments are not that useful. However, comments will become extremely
important as you begin writing more complex programs. When working on projects, you will
often need to share your programs with others. Reading R code without any context is really
challenging – even for experienced R programmers. Additionally, even if your collaborators
can surmise what your R code is doing, they may have no idea why you are doing it. Therefore,
your comments should tell others what your code does (if it isn’t completely obvious), and
more importantly, what your code is trying to accomplish. Even if you aren’t sharing your
code with others, you may need to come back and revise or reuse your code months or years
down the line. You may be shocked at how foreign the code you wrote will seem months or
years after you wrote it. Therefore, comments are not just important for others, they are also
important for future you!

Note

RStudio has a handy little keyboard shortcut for creating comments. On a Mac, type
shift + command + C. On Windows, Shift + Ctrl + C.

Note

Please put a space in between the pound/hash sign and the rest of your text when writing
comments. For example, # here is my comment instead of #here is my comment. It
just makes the comment easier to read.

4.7 Packages

In addition to being a functional programming language, R is also a type of programming
language called an open source programming language. For our purposes, this has two big
advantages. First, it means that R is FREE! Second, it means that smart people all around
the world get to develop new packages for the R language that can do cutting edge and/or
very niche things.

That second advantage is probably really confusing if this is not a concept you are already
familiar with. For example, when you install Microsoft Word on your computer all the code
that makes that program work is owned and Maintained by the Microsoft corporation. If you

81

https://en.wikipedia.org/wiki/Open-source_software


need Word to do something that it doesn’t currently do, your only option is to make a feature
request on Microsoft’s website. Microsoft may or may not every get around to fulfilling that
request.

R works a little differently. When you downloaded R from the CRAN website, you actually
downloaded something called Base R. Base R is maintained by the R Core Team. However,
anybody – even you – can write your own code (called packages) that add new functions to
the R syntax. Like all functions, these new functions allow you to do things that you can’t do
(or can’t do as easily) with Base R.

An analogy that we really like here is used by Ismay and Kim in ModernDive.

A good analogy for R packages is they are like apps you can download onto a
mobile phone. So R is like a new mobile phone: while it has a certain amount of
features when you use it for the first time, it doesn’t have everything. R packages
are like the apps you can download onto your phone from Apple’s App Store or
Android’s Google Play.1

So, when you get a new smart phone it comes with apps for making phone calls, checking email,
and sending text messages. But, what if you want to listen to music on Spotify? You may or
may not be able to do that through your phone’s web browser, but it’s way more convenient
and powerful to download and install the Spotify app.

In this course, we will make extensive use of packages developed by people and teams outside of
the R Core Team. In particular, we will use a number of related packages that are collectively
known as the Tidyverse. One of the most popular packages in the tidyverse collection (and one
of the most popular R packages overall) is called the dplyr package for data management.

In the same way that you have to download and install Spotify on your mobile phone before
you can use it, you have to download and install new R packages on your computer before you
can use the functions they contain. Fortunately, R makes this really easy. For most packages,
all you have to do is run the install.packages() function in the R console. For example,
here is how you would install the dplyr package.

# Make sure you remember to wrap the name of the package in single or double quotes.
install.packages("dplyr")

Over time, you will download and install a lot of different packages. All those packages with
all of those new functions start to create a lot of overhead. Therefore, R doesn’t keep them
loaded and available for use at all times. Instead, every time you open RStudio, you will have
to explicitly tell R which packages you want to use. So, when you close RStudio and open it
again, the only functions that you will be able to use are Base R functions. If you want to use
functions from any other package (e.g., dplyr) you will have to tell R that you want to do so
using the library() function.

82

https://moderndive.com/1-getting-started.html#packages
https://www.tidyverse.org/


# No quotes needed here
library(dplyr)

Technically, loading the package with the library() function is not the only way to use
a function from a package you’ve downloaded. For example, the dplyr package contains a
function called filter() that helps us keep or drop certain rows in a data frame. To use this
function, we have to first download the dplyr package. Then we can use the filter function in
one of two different ways.

library(dplyr)
filter(states_data, state == "Texas") # Keeps only the rows from Texas

The first way you already saw above. Load all the functions contained in the dplyr package
using the library() function. Then use that function just like any other Base R function.

The second way is something called the double colon syntax. To use the double colon
syntax, you type the package name, two colons, and the name of the function you want to use
from the package. Here is an example of the double colon syntax.

dplyr::filter(states_data, state == "Texas") # Keeps only the rows from Texas

Most of the time you will load packages using the library() function. However, we wanted
to show you the double colon syntax because you may come across it when you are reading R
documentation and because there are times when it makes sense to use this syntax.

4.8 Programming style

Finally, we want to discuss programming style. R can read any code you write as long as
you write it using valid R syntax. However, R code can be much easier or harder for people
(including you) to read depending on how it’s written. Chapter 10 of this book gives complete
details on writing R code that is as easy as possible for people to read. So, please make sure
to read it. It will make things so much easier for all of us!

83



5 Let’s Get Programming

In this chapter, we are going to tie together many of the concepts we’ve learned so far, and you
are going to create your first basic R program. Specifically, you are going to write a program
that simulates some data and analyzes it.

5.1 Simulating data

Data simulation can be really complicated, but it doesn’t have to be. It is simply the process
of creating data as opposed to finding data in the wild. This can be really useful in several
different ways.

1. Simulating data is really useful for getting help with a problem you are trying to solve.
Often, it isn’t feasible for you to send other people the actual data set you are working
on when you encounter a problem you need help with. Sometimes, it may not even be
legally allowed (i.e., for privacy reasons). Instead of sending them your entire data set,
you can simulate a little data set that recreates the challenge you are trying to address
without all the other complexity of the full data set. As a bonus,we have often found that
we end up figuring out the solution to the problem we’re trying to solve as we recreate
the problem in a simulated data set that we intended to share with others.

2. Simulated data can also be useful for learning about and testing statistical assumptions.
In epidemiology, we use statistics to draw conclusions about populations of people we
are interested in based on samples of people drawn from the population. Because we
don’t actually have data from all the people in the population, we have to make some
assumptions about the population based on what we find in our sample. When we
simulate data, we know the truth about our population because we created our population
to have that truth. We can then use this simulated population to play “what if” games
with our analysis. What if we only sampled half as many people? What if their heights
aren’t actually normally distributed? What if we used a probit model instead of a logit
model? Going through this process and answering these questions can help us understand
how much, and under what circumstances, we can trust the answers we found in the real
world.

So, let’s go ahead and write a complete R program to simulate and analyze some data. As we
said, it doesn’t have to be complicated. In fact, in just a few lines of R code below we simulate
and analyze some data about a hypothetical class.

84



class <- data.frame(
names = c("John", "Sally", "Brad", "Anne"),
heights = c(68, 63, 71, 72)

)

class

names heights
1 John 68
2 Sally 63
3 Brad 71
4 Anne 72

mean(class$heights)

[1] 68.5

As you can see, this data frame contains the students’ names and heights. We also use the
mean() function to calculate the average height of the class. By the end of this chapter, you
will understand all the elements of this R code and how to simulate your own data.

5.2 Vectors

Vectors are the most fundamental data structure in R. Here, data structure means “container
for our data.” There are other data structures as well; however, they are all built from vectors.
That’s why we say vectors are the most fundamental data structure. Some of these other
structures include matrices, lists, and data frames. In this book, we won’t use matrices or
lists much at all, so you can forget about them for now. Instead, we will almost exclusively
use data frames to hold and manipulate our data. However, because data frames are built
from vectors, it can be useful to start by learning a little bit about them. Let’s create our first
vector now.

# Create an example vector
names <- c("John", "Sally", "Brad", "Anne")
# Print contents to the screen
names

[1] "John" "Sally" "Brad" "Anne"

85



�Here’s what we did above:

• We created a vector of names with the c() (short for combine) function.

– The vector contains four values: “John”, “Sally”, “Brad”, and “Anne”.

– All of the values are character strings (i.e., words). We know this because all of the
values are wrapped with quotation marks.

– Here we used double quotes above, but we could have also used single quotes. We
cannot, however, mix double and single quotes for each character string. For exam-
ple, c("John', ...) won’t work.

• We assigned that vector of character strings to the word names using the <- function.

– R now recognizes names as an object that we can do things with.

– R programmers may refer to the names object as “the names object”, “the names
vector”, or “the names variable”. For our purposes, these all mean the same thing.

• We printed the contents of the names object to the screen by typing the word “names”.

– R returns (shows us) the four character values (“John” “Sally” “Brad” “Anne”)
on the computer screen.

Try copying and pasting the code above into the RStudio console on your computer. You
should notice the names vector appear in your global environment. You may also notice
that the global environment pane gives you some additional information about this vector
to the right of its name. Specifically, you should see chr [1:4] "John" "Sally" "Brad"
"Anne". This is R telling us that names is a character vector (chr), with four values ([1:4]),
and the first four values are "John" "Sally" "Brad" "Anne".

5.2.1 Vector types

There are several different vector types, but each vector can have only one type. The type of
the vector above was character. We can validate that with the typeof() function like so:

typeof(names)

[1] "character"

The other vector types that we will use in this book are double, integer, and logical. Double
vectors hold real numbers and integer vectors hold integers. Collectively, double vectors and
integer vectors are known as numeric vectors. Logical vectors can only hold the values TRUE
and FALSE. Here are some examples of each:

86

https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Integer


5.2.2 Double vectors

# A numeric vector
my_numbers <- c(12.5, 13.98765, pi)
my_numbers

[1] 12.500000 13.987650 3.141593

typeof(my_numbers)

[1] "double"

5.2.3 Integer vectors

Creating integer vectors involves a weird little quirk of the R language. For some reason, and
we have no idea why, we must type an “L” behind the number to make it an integer.

# An integer vector - first attempt
my_ints_1 <- c(1, 2, 3)
my_ints_1

[1] 1 2 3

typeof(my_ints_1)

[1] "double"

# An integer vector - second attempt
# Must put "L" behind the number to make it an integer. No idea why they chose "L".
my_ints_2 <- c(1L, 2L, 3L)
my_ints_2

[1] 1 2 3

typeof(my_ints_2)

[1] "integer"

87



5.2.4 Logical vectors

# A logical vector
# Type TRUE and FALSE in all caps
my_logical <- c(TRUE, FALSE, TRUE)
my_logical

[1] TRUE FALSE TRUE

typeof(my_logical)

[1] "logical"

Rather than have an abstract discussion about the particulars of each of these vector types
right now, we think it’s best to wait and learn more about them when they naturally arise
in the context of a real challenge we are trying to solve with data. At this point, just having
some vague idea that they exist is good enough.

5.2.5 Factor vectors

Above, we said that we would primarily work with four vector types in this book: character,
double, integer, and logical. Technically, that is true. Factors aren’t technically a vector
type (we will explain below), but calling them a vector type is close enough to true for our
purposes. We will briefly introduce you to factors here, and then discuss them in more depth
later in Chapter 19. We cover them in greater depth there because factors are most useful in
the context of working with categorical data – data that is grouped into discrete categories.
Some examples of categorical variables commonly seen in public health data are sex, race or
ethnicity, and level of educational attainment.

In R, we can represent a categorical variable in multiple different ways. For example, let’s say
that we are interested in recording people’s highest level of formal education completed in our
data. The discrete categories we are interested in are:

• 1 = Less than high school

• 2 = High school graduate

• 3 = Some college

• 4 = College graduate

88



We could then create a numeric vector to record the level of educational attainment for four
hypothetical people as shown below.

# A numeric vector of education categories
education_num <- c(3, 1, 4, 1)
education_num

[1] 3 1 4 1

But what is less-than-ideal about storing our categorical data this way? Well, it isn’t obvious
what the numbers in education_num mean. For the purposes of this example, we defined
them above, but if we didn’t have that information then we would likely have no idea what
categories the numbers represent.

We could also create a character vector to record the level of educational attainment for four
hypothetical people as shown below.

# A character vector of education categories
education_chr <- c(
"Some college", "Less than high school", "College graduate",
"Less than high school"

)
education_chr

[1] "Some college" "Less than high school" "College graduate"
[4] "Less than high school"

But this strategy also has a few limitations that we will discuss in Chapter 19. For now, we
just need to quickly learn how to create and identify factor vectors.

Typically, we don’t create factors from scratch. Instead, we typically convert (or “coerce”) an
existing numeric or character vector into a factor. For example, we can coerce education_num
to a factor like this:

# Coerce education_num to a factor
education_num_f <- factor(
x = education_num,
levels = 1:4,
labels = c(

"Less than high school", "High school graduate", "Some college",
"College graduate"

)

89



)
education_num_f

[1] Some college Less than high school College graduate
[4] Less than high school
4 Levels: Less than high school High school graduate ... College graduate

� Here’s what we did above:

• We used the factor() function to create a new factor version of education_num.

– You can type ?factor into your R console to view the help documentation for this
function and follow along with the explanation below.

– The first argument to the factor() function is the x argument. The value passed
to the x argument should be a vector of data. We passed the education_num vector
to the x argument.

– The second argument to the factor() function is the levels argument. This
argument tells R the unique values that the new factor variable can take. We used
the shorthand 1:4 to tell R that education_num_f can take the unique values 1, 2,
3, or 4.

– The third argument to the factor() function is the labels argument. The value
passed to the labels argument should be a character vector of labels (i.e., descrip-
tive text) for each value in the levels argument. The order of the labels in the
character vector we pass to the labels argument should match the order of the
values passed to the levels argument. For example, the ordering of levels and
labels above tells R that 1 should be labeled with “Less than high school”, 2
should be labeled with “High school graduate”, etc.

• We used the assignment operator (<-) to save our new factor vector in our global envi-
ronment as education_num_f.

– If we had used the name education_num instead, then the previous values in the
education_num vector would have been replaced with the new values. That is
sometimes what we want to happen. However, when it comes to creating factors,
we typically keep the numeric version of the vector and create an additional factor
version of the vector. We just often find that it can be useful to have both versions
of the variable hanging around during the analysis process.

– We also use the _f naming convention in our code. That means that when we create
a new factor vector, we name it the same thing the original vector was named with
the addition of _f (for factor) at the end.

90



• We printed the vector to the screen. The values in education_num_f look similar to
the character strings displayed in education_chr. Notice, however, that the values no
longer have quotes around them and R displays Levels: Less than high school High
school graduate Some college College graduate below the data values. This is R
telling us the possible categorical values that this factor could take on. This is a telltale
sign that the vector being printed to the screen is a factor.

Interestingly, although R uses labels to make factors look like character vectors, they are still
integer vectors under the hood. For example:

typeof(education_num_f)

[1] "integer"

And we can still view them as such.

as.numeric(education_num_f)

[1] 3 1 4 1

It is also possible to coerce character vectors to factors. For example, we can coerce
education_chr to a factor like so:

# Coerce education_chr to a factor
education_chr_f <- factor(
x = education_chr,
levels = c(

"Less than high school", "High school graduate", "Some college",
"College graduate"

)
)
education_chr_f

[1] Some college Less than high school College graduate
[4] Less than high school
4 Levels: Less than high school High school graduate ... College graduate

� Here’s what we did above:

• We coerced a character vector (education_chr) to a factor using the factor() function.

91



• Because the levels are character strings, there was no need to pass any values to the
labels argument this time. Keep in mind, though, that the order of the values passed
to the levels argument matters. It will be the order that the factor levels will be
displayed in our analyses.

You might reasonably wonder why we would want to convert character vectors to factors, but
we will save that discussion for Chapter 19.

5.3 Data frames

Vectors are useful for storing a single characteristic where all the data is of the same type.
However, in epidemiology, we typically want to store information about many different char-
acteristics of whatever we happen to be studying. For example, we didn’t just want the names
of the people in our class, we also wanted the heights. Of course, we can also store the heights
in a vector like so:

heights <- c(68, 63, 71, 72)
heights

[1] 68 63 71 72

But this vector, in and of itself, doesn’t tell us which height goes with which person. When
we want to create relationships between our vectors, we can use them to build a data frame.
For example:

# Create a vector of names
names <- c("John", "Sally", "Brad", "Anne")
# Create a vector of heights
heights <- c(68, 63, 71, 72)
# Combine them into a data frame
class <- data.frame(names, heights)
# Print the data frame to the screen
class

names heights
1 John 68
2 Sally 63
3 Brad 71
4 Anne 72

92



�Here’s what we did above:

• We created a data frame with the data.frame() function.

– The first argument we passed to the data.frame() function was a vector of names
that we previously created.

– The second argument we passed to the data.frame() function was a vector of
heights that we previously created.

• We assigned that data frame to the word class using the <- function.

– R now recognizes class as an object that we can do things with.

– R programmers may refer to this class object as “the class object” or “the class
data frame”. For our purposes, these all mean the same thing. We could also call
it a data set, but that term isn’t used much in R circles.

• We printed the contents of the class object to the screen by typing the word “class”.

– R returns (shows us) the data frame on the computer screen.

Try copying and pasting the code above into the RStudio console on your computer. You
should notice the class data frame appear in your global environment. You may also
notice that the global environment pane gives you some additional information about this
data frame to the right of its name. Specifically, you should see 4 obs. of 2 variables.
This is R telling us that class has four rows or observations (4 obs.) and two columns or
variables (2 variables). If you click the little blue arrow to the left of the data frame’s name,
you will see information about the individual vectors that make up the data frame.

As a shortcut, instead of creating individual vectors and then combining them into a data
frame as we’ve done above, most R programmers will create the vectors (columns) directly
inside of the data frame function like this:

# Create the class data frame
class <- data.frame(
names = c("John", "Sally", "Brad", "Anne"),
heights = c(68, 63, 71, 72)

) # Closing parenthesis down here.

# Print the data frame to the screen
class

93



names heights
1 John 68
2 Sally 63
3 Brad 71
4 Anne 72

As you can see, both methods produce the exact same result. The second method, however,
requires a little less typing and results in fewer objects cluttering up your global environment.
What we mean by that is that the names and heights vectors won’t exist independently in
your global environment. Rather, they will only exist as columns of the class data frame.

You may have also noticed that when we created the names and heights vectors (columns)
directly inside of the data.frame() function we used the equal sign (=) to assign values instead
of the assignment arrow (<-). This is just one of those quirky R exceptions we talked about
in Chapter 4. In fact, = and <- can be used interchangeably in R. It is only by convention
that we usually use <- for assigning values, but use = for assigning values to columns in data
frames. we don’t know why this is the convention. If it were up to me, we wouldn’t do this.
We would just pick = or <- and use it in all cases where we want to assign values. But, it isn’t
up to me and we gave up on trying to fight it a long time ago. Your R programming life will
be easier if you just learn to assign values this way – even if it’s dumb. �

Warning

By definition, all columns in a data frame must have the same length (i.e., number of
rows). That means that each vector you create when building your data frame must have
the same number of values in it. For example, the class data frame above has four names
and four heights. If we had only entered three heights, we would have gotten the follow-
ing error: Error in data.frame(names = c("John", "Sally", "Brad", "Anne"),
heights = c(68, : arguments imply differing number of rows: 4, 3

5.4 Tibbles

Tibbles are a data structure that come from another tidyverse package – the tibble package.
Tibbles are data frames and serve the same purpose in R that data frames serve; however, they
are enhanced in several ways. � You are welcome to look over the tibble documentation or the
tibbles chapter in R for Data Science if you are interested in learning about all the differences
between tibbles and data frames. For our purposes, there are really only a couple things we
want you to know about tibbles right now.

First, tibbles are a part of the tibble package – NOT base R. Therefore, we have to install and
load either the tibble package or the dplyr package (which loads the tibble package for us
behind the scenes) before we can create tibbles. We typically just load the dplyr package.

94

https://tibble.tidyverse.org/
https://www.tidyverse.org/
https://tibble.tidyverse.org/
https://r4ds.had.co.nz/tibbles.html


# Install the dplyr package. YOU ONLY NEED TO DO THIS ONE TIME.
install.packages("dplyr")

# Load the dplyr package. YOU NEED TO DO THIS EVERY TIME YOU START A NEW R SESSION.
library(dplyr)

Second, we can create tibbles using one of three functions: as_tibble(), tibble(), or
tribble(). I’ll show you some examples shortly.

Third, try not to be confused by the terminology. Remember, tibbles are data frames. They
are just enhanced data frames.

5.4.1 The as_tibble function

We use the as_tibble() function to turn an already existing basic data frame into a tibble.
For example:

# Create a data frame
my_df <- data.frame(
name = c("john", "alexis", "Steph", "Quiera"),
age = c(24, 44, 26, 25)

)

# Print my_df to the screen
my_df

name age
1 john 24
2 alexis 44
3 Steph 26
4 Quiera 25

# View the class of my_df
class(my_df)

[1] "data.frame"

�Here’s what we did above:

• We used the data.frame() function to create a new data frame called my_df.

95



• We used the class() function to view my_df’s class (i.e., what kind of object it is).

– The result returned by the class() function tells us that my_df is a data frame.

# Use as_tibble() to turn my_df into a tibble
my_df <- as_tibble(my_df)

# Print my_df to the screen
my_df

# A tibble: 4 x 2
name age
<chr> <dbl>

1 john 24
2 alexis 44
3 Steph 26
4 Quiera 25

# View the class of my_df
class(my_df)

[1] "tbl_df" "tbl" "data.frame"

�Here’s what we did above:

• We used the as_tibble() function to turn my_df into a tibble.

• We used the class() function to view my_df’s class (i.e., what kind of object it is).

– The result returned by the class() function tells us that my_df is still a data frame,
but it is also a tibble. That’s what “tbl_df” and “tbl” mean.

5.4.2 The tibble function

We can use the tibble() function in place of the data.frame() function when we want to
create a tibble from scratch. For example:

96



# Create a data frame
my_df <- tibble(
name = c("john", "alexis", "Steph", "Quiera"),
age = c(24, 44, 26, 25)

)

# Print my_df to the screen
my_df

# A tibble: 4 x 2
name age
<chr> <dbl>

1 john 24
2 alexis 44
3 Steph 26
4 Quiera 25

# View the class of my_df
class(my_df)

[1] "tbl_df" "tbl" "data.frame"

�Here’s what we did above:

• We used the tibble() function to create a new tibble called my_df.

• We used the class() function to view my_df’s class (i.e., what kind of object it is).

– The result returned by the class() function tells us that my_df is still a data frame,
but it is also a tibble. That’s what “tbl_df” and “tbl” mean.

5.4.3 The tribble function

Alternatively, we can use the tribble() function in place of the data.frame() function when
we want to create a tibble from scratch. For example:

# Create a data frame
my_df <- tribble(
~name, ~age,
"john", 24,
"alexis", 44,

97



"Steph", 26,
"Quiera", 25

)

# Print my_df to the screen
my_df

# A tibble: 4 x 2
name age
<chr> <dbl>

1 john 24
2 alexis 44
3 Steph 26
4 Quiera 25

# View the class of my_df
class(my_df)

[1] "tbl_df" "tbl" "data.frame"

�Here’s what we did above:

• We used the tribble() function to create a new tibble called my_df.

• We used the class() function to view my_df’s class (i.e., what kind of object it is).

– The result returned by the class() function tells us that my_df is still a data frame,
but it is also a tibble. That’s what “tbl_df” and “tbl” mean.

• There is absolutely no difference between the tibble we created above with the tibble()
function and the tibble we created above with the tribble() function. The only dif-
ference between the two functions is the syntax we used to pass the column names and
data values to each function.

– When we use the tibble() function, we pass the data values to the function horizon-
tally as vectors. This is the same syntax that the data.frame() function expects
us to use.

– When we use the tribble() function, we pass the data values to the function
vertically instead. The only reason this function exists is because it can sometimes
be more convenient to type in our data values this way. That’s it.

– Remember to type a tilde (“~”) in front of your column names when using the
tribble() function. For example, type ~name instead of name. That’s how R
knows you’re giving it a column name instead of a data value.

98



5.4.4 Why use tibbles

At this point, some students wonder, “If tibbles are just data frames, why use them? Why not
just use the data.frame() function?” That’s a fair question. As we have said multiple times
already, tibbles are enhanced. However, we don’t believe that going into detail about those
enhancements is going to be useful to most of you at this point – and may even be confusing.
But, we will show you one quick example that’s pretty self-explanatory.

Let’s say that we are given some data that contains four people’s age in years. We want to
create a data frame from that data. However, let’s say that we also want a column in our new
data frame that contains those same ages in months. Well, we could do the math ourselves. We
could just multiply each age in years by 12 (for the sake of simplicity, assume that everyone’s
age in years is gathered on their birthday). But, we’d rather have R do the math for us. We
can do so by asking R to multiply each value of the the column called age_years by 12. Take
a look:

# Create a data frame using the data.frame() function
my_df <- data.frame(
name = c("john", "alexis", "Steph", "Quiera"),
age_years = c(24, 44, 26, 25),
age_months = age_years * 12

)

Error: object 'age_years' not found

Uh, oh! We got an error! This error says that the column age_years can’t be found. How can
that be? We are clearly passing the column name age_years to the data.frame() function
in the code chunk above. Unfortunately, the data.frame() function doesn’t allow us to create
and refer to a column name in the same function call. So, we would need to break this task
up into two steps if we wanted to use the data.frame() function. Here’s one way we could
do this:

# Create a data frame using the data.frame() function
my_df <- data.frame(
name = c("john", "alexis", "Steph", "Quiera"),
age_years = c(24, 44, 26, 25)

)

# Add the age in months column to my_df
my_df <- my_df %>% mutate(age_months = age_years * 12)

# Print my_df to the screen
my_df

99



name age_years age_months
1 john 24 288
2 alexis 44 528
3 Steph 26 312
4 Quiera 25 300

Alternatively, we can use the tibble() function to get the result we want in just one step like
so:

# Create a data frame using the tibble() function
my_df <- tibble(
name = c("john", "alexis", "Steph", "Quiera"),
age_years = c(24, 44, 26, 25),
age_months = age_years * 12

)

# Print my_df to the screen
my_df

# A tibble: 4 x 3
name age_years age_months
<chr> <dbl> <dbl>

1 john 24 288
2 alexis 44 528
3 Steph 26 312
4 Quiera 25 300

In summary, tibbles are data frames. For the most part, we will use the terms “tibble” and
“data frame” interchangeably for the rest of the book. However, remember that tibbles are
enhanced data frames. Therefore, there are some things that we will do with tibbles that we
can’t do with basic data frames.

5.5 Missing data

As indicated in the warning box at the end of the data frames section of this chapter, all
columns in our data frames have to have the same length. So what do we do when we are truly
missing information in some of our observations? For example, how do we create the class
data frame if we are missing Anne’s height for some reason?

In R, we represent missing data with an NA. For example:

100



# Create the class data frame
data.frame(
names = c("John", "Sally", "Brad", "Anne"),
heights = c(68, 63, 71, NA) # Now we are missing Anne's height

)

names heights
1 John 68
2 Sally 63
3 Brad 71
4 Anne NA

Warning

Make sure you capitalize NA and don’t use any spaces or quotation marks. Also, make
sure you use NA instead of writing "Missing" or something like that.

By default, R considers NA to be a logical-type value (as opposed to character or numeric). for
example:

typeof(NA)

[1] "logical"

However, you can tell R to make NA a different type by using one of the more specific forms of
NA. For example:

typeof(NA_character_)

[1] "character"

typeof(NA_integer_)

[1] "integer"

typeof(NA_real_)

[1] "double"

101



Most of the time, we won’t have to worry about doing this because R will take care of converting
NA for us What do we mean by that? Well, remember that every vector can have only one
type. So, when we add an NA (logical by default) to a vector with double values as we did
above (i.e., c(68, 63, 71, NA)), that would cause us to have three double values and one
logical value in the same vector, which is not allowed. Therefore, R will automatically convert
the NA to NA_real_ for us behind the scenes.

This is a concept known as “type coercion” and you can read more about it here if you are
interested. As we said, most of the time we don’t have to worry about type coercion – it will
happen automatically. But, sometimes it doesn’t and it will cause R to give us an error. we
mostly encounter this when using the if_else() and case_when() functions, which we will
discuss later.

5.6 Our first analysis

Congratulations on your new R programming skills. � You can now create vectors and data
frames. This is no small thing. Basically, everything else we do in this book will start with
vectors and data frames.

Having said that, just creating data frames may not seem super exciting. So, let’s round out
this chapter with a basic descriptive analysis of the data we simulated. Specifically, let’s find
the average height of the class.

You will find that in R there are almost always many different ways to accomplish a given
task. Sometimes, choosing one over another is simply a matter of preference. Other times,
one method is clearly more efficient and/or accurate than another. This is a point that will
come up over and over in this book. Let’s use our desire to find the mean height of the class
as an example.

5.6.1 Manual calculation of the mean

For starters, we can add up all the heights and divide by the total number of heights to find
the mean.

(68 + 63 + 71 + 72) / 4

[1] 68.5

�Here’s what we did above:

• We used the addition operator (+) to add up all the heights.

102

https://r4ds.had.co.nz/vectors.html#coercion


• We used the division operator (/) to divide the sum of all the heights by 4 - the number
of individual heights we added together.

• We used parentheses to enforce the correct order of operations (i.e., make R do addition
before division).

This works, but why might it not be the best approach? Well, for starters, manually typing in
the heights is error prone. We can easily accidently press the wrong key. Luckily, we already
have the heights stored as a column in the class data frame. We can access or refer to a
single column in a data frame using the dollar sign notation.

5.6.2 Dollar sign notation

class$heights

[1] 68 63 71 72

�Here’s what we did above:

• We used the dollar sign notation to access the heights column in the class data frame.

– Dollar sign notation is just the data frame name, followed by the dollar sign, followed
by the column name.

5.6.3 Bracket notation

Further, we can use bracket notation to access each value in a vector. we think it’s easier to
demonstrate bracket notation than it is to describe it. For example, we could access the third
value in the names vector like this:

# Create the heights vector
heights <- c(68, 63, 71, 72)

# Bracket notation
# Access the third element in the heights vector with bracket notation
heights[3]

[1] 71

103



Remember, that data frame columns are also vectors. So, we can combine the dollar sign
notation and bracket notation, to access each individual value of the height column in the
class data frame. This will help us get around the problem of typing each individual height
value. For example:

# First way to calculate the mean
# (68 + 63 + 71 + 72) / 4

# Second way. Use dollar sign notation and bracket notation so that we don't
# have to type individual heights
(class$heights[1] + class$heights[2] + class$heights[3] + class$heights[4]) / 4

[1] 68.5

5.6.4 The sum function

The second method is better in the sense that we no longer have to worry about mistyping the
heights. However, who wants to type class$heights[...] over and over? What if we had a
hundred numbers? What if we had a thousand numbers? This wouldn’t work. Luckily, there
is a function that adds all the numbers contained in a numeric vector – the sum() function.
Let’s take a look:

# Create the heights vector
heights <- c(68, 63, 71, 72)

# Add together all the individual heights with the sum function
sum(heights)

[1] 274

Remember, that data frame columns are also vectors. So, we can combine the dollar sign
notation and sum() function, to add up all the individual heights in the heights column of
the class data frame. It looks like this:

# First way to calculate the mean
# (68 + 63 + 71 + 72) / 4

# Second way. Use dollar sign notation and bracket notation so that we don't
# have to type individual heights
# (class$heights[1] + class$heights[2] + class$heights[3] + class$heights[4]) / 4

104



# Third way. Use dollar sign notation and sum function so that we don't have
# to type as much
sum(class$heights) / 4

[1] 68.5

�Here’s what we did above:

• We passed the numeric vector heights from the class data frame to the sum() function
using dollar sign notation.

• The sum() function returned the total value of all the heights added together.

• We divided the total value of the heights by four – the number of individual heights.

5.6.5 Nesting functions

!! Before we move on, we want to point out something that is actually kind of a big deal. In
the third method above, we didn’t manually add up all the individual heights - R did this
calculation for us. Further, we didn’t store the sum of the individual heights somewhere and
then divide that stored value by 4. Heck, we didn’t even see what the sum of the individual
heights were. Instead, the returned value from the sum function (274) was used directly in
the next calculation (/ 4) by R without us seeing the result. In other words, (68 + 63 +
71 + 72) / 4, 274 / 4, and sum(class$heights) / 4 are all exactly the same thing to R.
However, the third method (sum(class$heights) / 4) is much more scalable (i.e., adding
a lot more numbers doesn’t make this any harder to do) and much less error prone. Just to
be clear, the BIG DEAL is that we now know that the values returned by functions can be
directly passed to other functions in exactly the same way as if we typed the values ourselves.

This concept, functions passing values to other functions is known as nesting functions. It’s
called nesting functions because we can put functions inside of other functions.

“But, Brad, there’s only one function in the command sum(class$heights) / 4 – the sum()
function.” Really? Is there? Remember when we said that operators are also functions in
R? Well, the division operator is a function. And, like all functions it can be written with
parentheses like this:

# Writing the division operator as a function with parentheses
`/`(8, 4)

[1] 2

105



�Here’s what we did above:

• We wrote the division operator in its more function-looking form.

– Because the division operator isn’t a letter, we had to wrap it in backticks (‘).

– The backtick key is on the top left corner of your keyboard near the escape key
(esc).

– The first argument we passed to the division function was the dividend (The number
we want to divide).

– The second argument we passed to the division function was the divisor (The num-
ber we want to divide by).

So, the following two commands mean exactly the same thing to R:

8 / 4

`/`(8, 4)

And if we use this second form of the division operator, we can clearly see that one function
is nested inside another function.

`/`(sum(class$heights), 4)

[1] 68.5

�Here’s what we did above:

• We calculated the mean height of the class.

– The first argument we passed to the division function was the returned value from
the sum() function.

– The second argument we passed to the division function was the divisor (4).

This is kind of mind-blowing stuff the first time you encounter it. � we wouldn’t blame you
if you are feeling overwhelmed or confused. The main points to take away from this section
are:

1. Everything we do in R, we will do with functions. Even operators are functions, and
they can be written in a form that looks function-like; however, we will almost never
actually write them in that way.

106



2. Functions can be nested. This is huge because it allows us to directly pass returned
values to other functions. Nesting functions in this way allows us to do very complex
operations in a scalable way and without storing a bunch of unneeded values that are
created in the intermediate steps of the operation.

3. The downside of nesting functions is that it can make our code difficult to read - especially
when we nest many functions. Fortunately, we will learn to use the pipe operator (%>%)
in the workflow basics part of this book. Once you get used to pipes, they will make
nested functions much easier to read.

Now, let’s get back to our analysis…

5.6.6 The length function

We think most of us would agree that the third method we learned for calculating the mean
height is preferable to the first two methods for most situations. However, the third method
still requires us to know how many individual heights are in the heights column (i.e., 4).
Luckily, there is a function that tells us how many individual values are contained in a vector
– the length() function. Let’s take a look:

# Create the heights vector
heights <- c(68, 63, 71, 72)

# Return the number of individual values in heights
length(heights)

[1] 4

Remember, that data frame columns are also vectors. So, we can combine the dollar sign
notation and length() function to automatically calculate the number of values in the heights
column of the class data frame. It looks like this:

# First way to calculate the mean
# (68 + 63 + 71 + 72) / 4

# Second way. Use dollar sign notation and bracket notation so that we don't
# have to type individual heights
# (class$heights[1] + class$heights[2] + class$heights[3] + class$heights[4]) / 4

# Third way. Use dollar sign notation and sum function so that we don't have
# to type as much
# sum(class$heights) / 4

107



# Fourth way. Use dollar sign notation with the sum function and the length
# function
sum(class$heights) / length(class$heights)

[1] 68.5

�Here’s what we did above:

• We passed the numeric vector heights from the class data frame to the sum() function
using dollar sign notation.

• The sum() function returned the total value of all the heights added together.

• We passed the numeric vector heights from the class data frame to the length()
function using dollar sign notation.

• The length() function returned the total number of values in the heights column.

• We divided the total value of the heights by the total number of values in the heights
column.

5.6.7 The mean function

The fourth method above is definitely the best method yet. However, this need to find the
mean value of a numeric vector is so common that someone had the sense to create a function
that takes care of all the above steps for us – the mean() function. And as you probably saw
coming, we can use the mean function like so:

# First way to calculate the mean
# (68 + 63 + 71 + 72) / 4

# Second way. Use dollar sign notation and bracket notation so that we don't
# have to type individual heights
# (class$heights[1] + class$heights[2] + class$heights[3] + class$heights[4]) / 4

# Third way. Use dollar sign notation and sum function so that we don't have
# to type as much
# sum(class$heights) / 4

# Fourth way. Use dollar sign notation with the sum function and the length
# function
# sum(class$heights) / length(class$heights)

108



# Fifth way. Use dollar sign notation with the mean function
mean(class$heights)

[1] 68.5

Congratulations again! You completed your first analysis using R!

5.7 Some common errors

Before we move on, we want to briefly discuss a couple common errors that will frustrate
many of you early in your R journey. You may have noticed that we went out of our way to
differentiate between the heights vector and the heights column in the class data frame. As
annoying as that may have been, we did it for a reason. The heights vector and the heights
column in the class data frame are two separate things to the R interpreter, and you have to
be very specific about which one you are referring to. To make this more concrete, let’s add
a weight column to our class data frame.

class$weight <- c(160, 170, 180, 190)

�Here’s what we did above:

• We created a new column in our data frame – weight – using dollar sign notation.

Now, let’s find the mean weight of the students in our class.

mean(weight)

Error: object 'weight' not found

Uh, oh! What happened? Why is R saying that weight doesn’t exist? We clearly created it
above, right? Wrong. We didn’t create an object called weight in the code chunk above. We
created a column called weight in the object called class in the code chunk above. Those are
different things to R. If we want to get the mean of weight we have to tell R that weight is a
column in class like so:

mean(class$weight)

[1] 175

109



A related issue can arise when you have an object and a column with the same name but
different values. For example:

# An object called scores
scores <- c(5, 9, 3)

# A colummn in the class data frame called scores
class$scores <- c(95, 97, 93, 100)

If you ask R for the mean of scores, R will give you an answer.

mean(scores)

[1] 5.666667

However, if you wanted the mean of the scores column in the class data frame, this won’t
be the correct answer. Hopefully, you already know how to get the correct answer, which is:

mean(class$scores)

[1] 96.25

Again, the scores object and the scores column of the class object are different things to
R.

5.8 Summary

Wow! We covered a lot in this first part of the book on getting started with R and RStudio.
Don’t feel bad if your head is swimming. It’s a lot to take-in. However, you should feel proud
of the fact that you can already do some legitimately useful things with R. Namely, simulate
and analyze data.

Before we dive into more advanced programming and data analysis, we’ll take a moment to
focus on an equally important skill: how to ask good questions and get help when we’re stuck.
That’s the topic of the next chapter — and it’s something that will serve us well throughout
our entire journey as an R programmer.

110



6 Asking Questions

Sooner or later, all of us will inevitably have questions while writing R programs. This is true
for novice R users and experienced R veterans alike. Getting useful answers to programming
questions can be really complicated under the best conditions (i.e., where someone with expe-
rience can physically sit down next to you to interactively work through your code with you).
In reality, getting answers to our coding questions is often further complicated by the fact that
we don’t have access to an experienced R programmer who can sit down next to us and help
us debug our code. Therefore, this chapter will provide us with some guidance for seeking R
programming help remotely. We’re not going to lie, this will likely be a frustrating process at
times, but we will get through it!

An example

Because we like to start with the end in mind, click here for an example of a real post that we
created on Stack Overflow. We will refer back to this post below.

6.1 When should we seek help?

Imagine yourself sitting in front of your computer on a Wednesday afternoon. You are working
on a project that requires the analysis of some data. You know that you need to clean up
your data a little bit before you can do your analysis. For example, maybe you need to drop
all the rows from your data that have a missing value for a set of variables. Before you drop
them, you want to take a look at which rows meet this criterion and what information would
potentially be lost in the process of dropping those rows. In other words, you just want to
view the rows of your data that have a missing value for any variable. Sounds simple enough!
However, you start typing out the code to make this happen and that’s when you start to run
into problems. At this point, the problem you encounter will typically come in one of a few
different flavors.

1. As you sit down to write the code, you realize that you don’t really even know where to
start.

2. You happily start typing out the code that you believe should work, but when you run
the code you get an error message.

3. You happily start typing out the code that you believe should work, but when you run
the code you don’t get the result you were expecting.

111



4. You happily start typing out the code that you believe should work and it does! However,
you notice that your solution seems clunky, inefficient, or otherwise less than ideal.

In any of these cases, you will need to figure out what your next step will be. We believe that
there is typically a lot of value in starting out by attempting to solve the problem on your own
without directly asking others for help. Doing so will often lead you to a deeper understanding
of the solution than you would obtain by simply being given the answer. Further, finding the
solution on your own helps you develop problem-solving skills that will be useful for the next
coding problem you encounter – even if the details of that problem are completely different
than the details of your current problem. Having said that, finding a solution on your own does
not mean attempting to do so in a vacuum without the use of any resources (e.g., textbooks,
existing code, or the internet). By all means, use available resources (we suggest some good
ones below)!

On the other hand, we – the authors – have found ourselves stubbornly hacking away on
our own solution to a coding problem long after doing so ceased being productive on many
occasions. We don’t recommend doing this either. We hope that the guidance in this chapter
will provide you with some tools for effectively and efficiently seeking help from the broader
R programming community once you’ve made a sincere effort to solve the problem on your
own.

But, how long should you attempt to solve the problem on your own before reaching out for
help? As far as we know, there are no hard-and-fast rules about how long you should wait
before seeking help with coding problems from others. In reality, the ideal amount of time
to wait is probably dependent on a host of factors including the nature of the problem, your
level of experience, project deadlines, all of your little personal idiosyncrasies, and a whole
host of other factors. Therefore, the best guidance we can provide is pretty vague. In general,
it isn’t ideal to reach out to the R programming community for help as soon as you encounter
a problem, nor is it typically ideal to spend many hours attempting to solve a coding problem
that could be solved in few minutes if you were to post a well-written question on Stack
Overflow or the RStudio Community (more on these below).

6.2 Where should we seek help?

Where should you turn once you’ve determined that it is time to seek help for your coding
problem? We suggest that you simply start with Google. Very often, a quick Google search
will give you the results you need to help you solve your problem. However, Google search
results won’t always have the answer you are looking for.

If you’ve done a Google search and you still can’t figure out how to solve your coding problem,
we recommend posting a question on one of the following two websites:

112



1. Stack Overflow (https://stackoverflow.com/). This is a great website where program-
mers who use many different languages help each other solve programming problems.
This website is free, but you will need to create an account.

2. RStudio Community (https://community.rstudio.com/). Another great discussion-
board-type website from the people who created a lot of the software we will use in this
book. This website is also free, but also requires you to create an account.

Note

Please remember to cross-link your posts if you happen to create them on both Stack
Overflow and RStudio Community. When we say “cross-link” we mean that you should
add a hyperlink to your RStudio Community post on your Stack Overflow post and a
link to your Stack Overflow post on your RStudio Community post.

Next, let’s learn how to make a post.

6.3 How should we seek help?

At this point, you’ve run into a problem, you’ve spent a little time trying to work out a
solution in your head, you’ve searched Google for a solution to the problem, and you’ve still
come up short. So, you decide to ask the R programming community for some help using Stack
Overflow. But, how do you do that?

Note

We’ve decided to show you haw to create a post on Stack Overflow in this section, but the
process for creating a post in the RStudio Community is very similar. Further, an RStu-
dio Community tutorial is available here: https://community.rstudio.com/t/example-
question-answer-topic-thread/70762.

6.3.1 Creating a post on Stack Overflow

The first thing you need to do is navigate to the Stack Overflow website. The homepage will
look something like the screenshot below.

113

https://stackoverflow.com/


Next, you will click the blue “Ask Question” button. Doing so will take you to a screen like
the following.

114



As you can see, you need to give your post a title, you need to post the actual question in
the body section of the form, and then you can (and should) tag your post. “A tag is simply
a word or a phrase that describes the topic of the question.”2 For our R-related questions we
will want to use the “r” tag. Other examples of tags you may use often if you continue your
R programming journey may include “dplyr” and “ggplot2”. When you have completed the
form, you simply click the blue “Review your question” button towards the bottom-left corner
of the screen.

115

https://stackoverflow.com/help/tagging


6.3.1.1 Inserting R code

To insert R code into your post (i.e., in the body), you will need to create code blocks. Then,
you will type your R code inside of the code blocks. You can create code blocks using back-ticks
( ‘ ). The back-tick key is the upper-left key of most keyboards – right below the escape key.
On our keyboard, the back-tick and the tilde ( ~ ) share the same key. We will learn more
about code blocks in Chapter 8. For now, let’s just take a look at an example of creating a
code block in the screenshot below. This screenshot comes from the example Stack Overflow
post introduced at the beginning of the chapter.

As you can see, we placed three back-ticks on their own line before our R code and three
back-ticks on their own line after our R code. Alternatively, we could have used our mouse
to highlight our R code and then clicked the code format button, which is highlighted in the
screenshot above and looks like an empty pair of curly braces ( {} ).

6.3.1.2 Reviewing the post

After you create your post and click the “Review your question” button, you will have an
opportunity to check your post for a couple of potential issues.

1. Duplicates. You want to try your best to make sure your question isn’t a duplicate
question. Meaning, you want to make sure that someone else hasn’t already asked the
same question or a question that is very similar. As you are typing your post title, Stack
Overflow will show you a list of potentially similar questions. It will show you that list
again as you are reviewing your post. You should take a moment to look through that

116



list and make sure you question isn’t going to be a duplicate. If it does end up being a
duplicate, Stack Overflow moderators may tag it as such and close it.

2. Typos and errors. Of course, you also want to check your post for standard typos,
grammatical errors, and coding errors. However, you can always edit your post later if
an error does slip through. You just need to click the edit text at the bottom of your
post. A screenshot from the example post is shown in the screenshot below.

6.3.2 Creating better posts and asking better questions

There are no bad R programming questions, but there are definitely ways to ask those questions
that will be better received than others. And better received questions will typically result
in faster responses and more useful answers. It’s important that you ask your questions in a
way that will allow the reader to understand what you are trying to accomplish, what you’ve
already tried, and what results you are getting. Further, unless it’s something extremely
straight forward, you should always provide a little chunk of data that recreates the
problem you are experiencing. These are known as reproducible examples This is
so important that there is an R package that does nothing but help you create reproducible
examples – Reprex.

Additionally, Stack Overflow and the RStudio community both publish guidelines for posting
good questions.

• Stack Overflow guide to asking questions: https://stackoverflow.com/help/how-to-ask

• RStudio Community Tips for writing R-related questions: https://community.rstudio.com/t/faq-
tips-for-writing-r-related-questions/6824

You should definitely pause here an take a few minutes to read through these guidelines. If not
now, come back and read them before you post your first question on either website. Below,
we show you a few example posts and highlight some of the most important characteristics of
quality posts.

117

https://stackoverflow.com/help/duplicates
https://reprex.tidyverse.org/


6.3.2.1 Example posts

Here are a few examples of highly viewed posts on Stack Overflow and the RStudio community.
Feel free to look them over. Notice what was good about these posts and what could have been
better. The specifics of these questions are totally irrelevant. Instead, look for the elements
that make posts easy to understand and respond to.

1. Stack Overflow: How to join (merge) data frames (inner, outer, left, right)

2. RStudio Community: Error: Aesthetics must be either length 1 or the same as the data
(2): fill

3. Stack Overflow: How should I deal with “package ‘xxx’ is not available (for R version
x.y.z)” warning?

4. RStudio Community: Could anybody help me! Cannot add ggproto objects together

6.3.2.2 Question title

When creating your posts, you want to make sure they have succinct, yet descriptive, titles.
Stack overflow suggests that you pretend you are talking to a busy colleague and have to
summarize your issue in a single sentence.3 The RStudio Community tips for writing questions
further suggests that you be specific and use keywords.4 Finally, if you are really struggling,
it may be helpful to write your title last.3 In our opinion, the titles from the first 3 examples
above are pretty good. The fourth has some room for improvement.

6.3.2.3 Explanation of the issue

Make sure your posts have a brief, yet clear, explanation of what you are trying to accomplish.
For example, “Sometimes I want to view all rows in a data frame that will be dropped if I drop
all rows that have a missing value for any variable. In this case, I’m specifically interested in
how to do this with dplyr 1.0’s across() function used inside of the filter() verb.”

In addition, you may want to add what you’ve already tried, what result you are
getting, and what result you are expecting. This information can help others better
understand your problem and understand if the solution they offer you does what you are
actually trying to do.

Finally, if you’ve already come across other posts or resources that were similar to the problem
you are having, but not quite similar enough for you to solve your problem, it can be helpful
to provide links to those as well. The author of example 3 above (i.e., How should I deal with
“package ‘xxx’ is not available (for R version x.y.z)” warning?) does a very thorough job of
linking to other posts.

118

https://stackoverflow.com/questions/1299871/how-to-join-merge-data-frames-inner-outer-left-right
https://community.rstudio.com/t/error-aesthetics-must-be-either-length-1-or-the-same-as-the-data-2-fill/15579
https://community.rstudio.com/t/error-aesthetics-must-be-either-length-1-or-the-same-as-the-data-2-fill/15579
https://stackoverflow.com/questions/25721884/how-should-i-deal-with-package-xxx-is-not-available-for-r-version-x-y-z-wa
https://stackoverflow.com/questions/25721884/how-should-i-deal-with-package-xxx-is-not-available-for-r-version-x-y-z-wa
https://community.rstudio.com/t/could-anybody-help-me-cannot-add-ggproto-objects-together/11271/4
https://stackoverflow.com/questions/25721884/how-should-i-deal-with-package-xxx-is-not-available-for-r-version-x-y-z-wa
https://stackoverflow.com/questions/25721884/how-should-i-deal-with-package-xxx-is-not-available-for-r-version-x-y-z-wa


6.3.2.4 Reproducible example

Make sure your question/post includes a small, reproducible data set that helps
others recreate your problem. This is so important, and so often overlooked by students
in our courses. Notice that we did NOT say to post the actual data you are working on
for your project. Typically, the actual data sets that we work with will have many more
rows and columns than are needed to recreate the problem. All of this extra data just makes
the problem harder to clearly see. And more importantly, the real data we often work with
contains protected health information (PHI) that should NEVER be openly published
on the internet.

Here is an example of a small, reproducible data set that we created for the example Stack
Overflow post introduced at the beginning of the chapter. It only has 5 data rows and 3
columns, but any solution that solves the problem for this small data set will likely solve the
problem in our actual data set as well.

# Load the dplyr package.
library(dplyr)

# Simulate a small, reproducible example of the problem.
df <- tribble(
~id, ~x, ~y,
1, 1, 0,
2, 1, 1,
3, NA, 1,
4, 0, 0,
5, 1, NA

)

Sometimes you can add reproducible data to your post without simulating your own data.
When you download R, it comes with some built in data sets that all other R users have access
to as well. You can see an full list of those data sets by typing the following command in your
R console:

data()

There are two data sets in particular, mtcars and iris, that seemed to be used often in
programming examples and question posts. You can add those data sets to your global envi-
ronment and start experimenting with them using the following code.

119



# Add the mtcars data frame your global environment
data(mtcars)

# Add the iris data frame to your global environment
data(iris)

In general, you are safe to post a question on Stack Overflow or the RStudio Community using
either of these data frames in your example code – assuming you are able to recreate the issue
you are trying to solve using these data frames.

6.4 Helping others

Eventually, you may get to a point where you are able to help others with their R coding issues.
In fact, spending a little time each day looking through posts and seeing if you can provide
answers (whether you officially post them or not) is one way to improve your R coding skills.
For some of us, this is even a fun way to pass time! �

In the same way that there ways to improve the quality and usefulness of your question
posts, there are also ways to improve the quality and usefulness of your replies to question
posts. Stack Overflow also provides a guide for writing quality answers, which is available here:
https://stackoverflow.com/help/how-to-answer. In our opinion, the most important part is to
be patient, kind, and respond with a genuine desire to be helpful.

6.5 Summary

In this chapter we discussed when and how to ask for help with R coding problems that will
inevitably occur. In short,

1. Try solving the problem on your own first, but don’t spend an entire day beating your
head against the wall.

2. Start with Google.

3. If you can’t find a solution on Google, create a post on Stack Overflow or the RStudio
Community.

4. Use best practices to create a high quality posts on Stack Overflow or the RStudio
Community. Specifically:

• Write succinct, yet descriptive, titles.

120



• Write a a brief, yet clear, explanation of what you are trying to accomplish. Add
what you’ve already tried, what result you are getting, and what result you are
expecting.

• Try to always include a reproducable example of the problem you are encountering
in the form of data.

5. Be patient, kind, and genuine when posting or responding to posts.

121



Part II

Coding Tools and Best Practices

122



7 R Scripts

Up to this point, we’ve only showed you how to submit your R code to R in the console.
Figure 7.1

Figure 7.1: Submitting R code in the console.

Submitting code directly to the console in this way works well for quick little tasks and snippets
of code. But, writing longer R programs this way has some drawbacks that are probably already
obvious to you. Namely, your code isn’t saved anywhere. And, because it isn’t saved anywhere,
you can’t modify it, use it again later, or share it with others.

Technically, the statements above are not entirely true. When you submit code to the console,
it is copied to RStudio’s History pane and from there you can save, modify, and share with
others (see figure Figure 7.2. But, this method is much less convenient, and provides you with
far fewer whistles and bells than the other methods we’ll discuss in this book.

Those of you who have worked with other statistical programs before may be familiar with
the idea of writing, modifying, saving, and sharing code scripts. SAS calls these code scripts

123



Figure 7.2: Console commands copied to the History pane.

“SAS programs”, Stata calls them “DO files”, and SPSS calls them “SPSS syntax files”. If you
haven’t created code scripts before, don’t worry. There really isn’t much to it.

In R, the most basic type of code script is simply called an R script. An R script is just a
plain text file that contains R code and comments. R script files end with the file extension
.R.

Before we dive into giving you any more details about R scripts, we want to say that we’re
actually going to discourage you from using them for most of what we do in this book. Instead,
we’re going to encourage you to use Quarto files for the majority of your interactive coding,
and for preparing your final products for end users. The next chapter is all about Quarto files.
However, we’re starting with R scripts because:

1. They are simpler than Quarto files, so they are a good place to start.

2. Some of what we discuss below will also apply to Quarto files.

3. R scripts are a better choice than Quarto files in some situations (e.g., writing R
packages, creating Shiny apps).

4. Some people just prefer using R scripts.

With all that said, the screenshot below is of an example R script:

124



Figure 7.3: Example R script.

Click here to download the R script

As you can see, I’ve called out a couple key elements of the R script to discuss. Figure 7.3

First, instead of just jumping into writing R code, lines 1-5 contain a header that we’ve created
with comments. Because we’ve created it with comments, the R interpreter will ignore it. But,
it will help other people you collaborate with (including future you) figure out what this script
does. Therefore, we suggest that your header includes at least the following elements:

1. A brief description of what the R script does.

2. The author(s) who wrote the R script.

3. Important dates. For example, the date it was originally created and the date it was last
modified. You can usually get these dates from your computer’s operating system, but
they aren’t always accurate.

Second, you may notice that we also used comments to create something we’re calling deco-
rations on lines 1, 5, and 17. Like all comments, they are ignored by the R interpreter. But,
they help create visual separation between distinct sections of your R code, which makes your
code easier for humans to read. We tend to use the equal sign (# ====) for separating major
sections and the dash (# ----) for separating minor sections; although, “major” and “minor”
are admittedly subjective.

125

https://www.dropbox.com/scl/fi/wria8kunjnnr6qs97p7tm/example_script.R?rlkey=bv28jbfzlt4eusgocxaum7rpq&dl=1


we haven’t explicitly highlighted it in the screenshot above, but it’s probably worth pointing
out the use of line breaks (i.e., returns) in the code as well. This is much easier to read…

# Load packages
library(dplyr)

# Load data
data("mtcars")

# I'm not sure what's in the mtcars data. I'm printing it below to take a look
mtcars

## Data analysis
# ----------------------------------------------------------------------------

# Below, we calculate the average mpg across all cars in the mtcars data frame.
mean(mtcars$mpg)

# Here, we also plot mpg against displacement.
plot(mtcars$mpg, mtcars$disp)

than this…

# Load packages
library(dplyr)
# Load data
data("mtcars")
# I'm not sure what's in the mtcars data. I'm printing it below to take a look
mtcars
## Data analysis
# ----------------------------------------------------------------------------
# Below, we calculate the average mpg across all cars in the mtcars data frame.
mean(mtcars$mpg)
# Here, we also plot mpg against displacement.
plot(mtcars$mpg, mtcars$disp)

Third, it’s considered a best practice to keep each line of code to 80 characters (including
spaces) or less. There’s a little box at the bottom left corner of your R script that will tell
you what row your cursor is currently in and how many characters into that row your cursor
is currently at (starting at 1, not 0).

For example, 20:3 corresponds to having your cursor between the “e” and the “a” in
mean(mtcars$mpg) in the example script above. Figure 7.4

126



Figure 7.4: Cursor location.

Fourth, it’s also considered a best practice to load any packages that your R code will use at
the very top of your R script (lines 7 & 8). Figure 7.3 Doing so will make it much easier for
others (including future you) to see what packages your R code needs to work properly right
from the start.

7.1 Creating R scripts

To create your own R scripts, click on the icon shown below Figure 7.5 and you will get a
dropdown box with a list of files you can create. @ref(fig:new-r-script2)

Click the very first option – R Script.

When you do, a new untitled R Script will appear in the source pane.

127



Figure 7.5: Click the new source file icon.

Figure 7.6: New source file options.

128



Figure 7.7: A blank R script in the source pane.

And that’s pretty much it. Everything else in figure Figure 7.3 is just R code and comments
about the R code. But, you can now easily save, modify, and share this code with others. In
the next chapter, we are going to learn how to write R code in Quarto files, where we can add
a ton of whistles and bells to this simple R script.

129



8 Quarto Files

In the R Scripts chapter, you learned how to create R scripts – plain text files that contain R
code and comments. These R scripts are kind of a big deal because they give us a simple and
effective tool for saving, modifying, and sharing our R code. If it weren’t for the existence of
Quarto files, we would probably do all of the coding in this book using R scripts. However,
Quarto files do exist and they are AWESOME! So, we’re going to suggest that you use them
instead of R scripts the majority of the time.

It’s actually kind of difficult for us to describe what a Quarto file is if you’ve never seen or
heard of one before. Therefore, we’re going to start with an example and work backwards from
there. Figure 8.1 below is a Quarto file. It includes the exact same R code and comments as
the example we saw in Figure 7.3 in the previous chapter.

Figure 8.1: Example Quarto file.

Click here to download the Quarto file

130

../r_scripts/r_scripts.qmd
https://Quarto.org/
https://www.dropbox.com/scl/fi/pzc1wx9tbfqbzupbedvuw/example_quarto.qmd?rlkey=2pkodypje8ijxeieatys002of&dl=1


Notice that the results are embedded directly in the Quarto file immediately below the R code
(e.g., between lines 21 and 22)!

Once rendered, the Quarto file creates the HTML file you see below in Figure 8.2. HTML
files are what websites are made out of, and we’ll walk you through how to create them from
Quarto files later in this chapter.

Figure 8.2: Preview of HTML file created from a Quarto file.

Click here to download the rendered HTML file.

Notice how everything is nicely formatted and easy to read!

When you create Quarto files on your computer, as in Figure 8.3, the rendered HTML file is
saved in the same folder by default.

In Figure 8.3 above, the HTML file is highlighted with a red box and ends with the .html
file extension. The Quarto file is below the HTML file and ends with the .qmd file extension.
Both of these files can be modified, saved, and shared with others.

Warning

HTML documents often require supporting files (e.g., images, CSS style sheets, and
JavaScript scripts) to produce the final formatted output you see in the Figure 8.2. Notice
that we used the embed-resources: true option in our yaml header (yaml headers are

131

https://www.dropbox.com/scl/fi/gwzgrmq34xqsgz7nibl3v/example_quarto.html?rlkey=plkxst3ldtixghoojoaazkwrb&dl=1


Figure 8.3: Quarto file and rendered HTML file and on MacOS.

described in more detail below). Including that option makes it possible for us to send a
single HTML file to others with all the supporting files embedded. Please see the Quarto
documentation for more information about HTML document options.

8.1 What is Quarto?

There are literally entire websites and books about Quarto. Therefore, we’re only going to hit
some of the highlights in this chapter. As a starting point, you can think of Quarto files as
being a mix of R scripts, the R console, and a Microsoft Word or Google Doc document. We
say this because:

• The R code that you would otherwise write in R scripts is written in R code chunks
when you use Quarto files. In Figure 8.1 there are R code chunks at lines 10 to 12, 14
to 16, 18 to 21, 27 to 29, and 33 to 35.

• Instead of having to flip back and forth between your source pane and your console
(or viewer) pane in RStudio, the results from your R code are embedded directly in
the Quarto file – directly below the code that generated them. In Figure 8.1 there are

132

https://Quarto.org/docs/output-formats/html-basics#self-contained
https://Quarto.org/docs/output-formats/html-basics#self-contained
https://Quarto.org/


embedded results between lines 21 and 22, between lines 29 and 30, and between lines
35 and 36 (not fully visible).

• When creating a document in Microsoft Word or Google Docs, you may format text
headings to help organize your document, you may format your text to emphasize certain
words, you may add tables to help organize concepts or data, you may add links to other
resources, and you may add pictures or charts to help you clearly communicate ideas
to yourself or others. Similarly, Quarto files allow you to surround your R code with
formatted text, tables, links, pictures, and charts directly in your document.

Even when we don’t share our Quarto files with anyone else, we find that the added function-
ality described above really helps us organize our data analysis more effectively and helps us
understand what we were doing if we come back to the analysis at some point in the future.

But, Quarto_really_ shines when we do want to share our analysis or results with others. To
get an idea of what we’re talking about, please take a look at the Quarto gallery and view
some of the amazing things you can do with Quarto. As you can see there, Quarto files mix
R code with other kinds of text and media to create documents, websites, presentations, and
more. In fact, the book you are reading right now is created with Quarto files!

8.2 Why use Quarto?

At this point, you may be thinking “Ok, that Quarto gallery has some cool stuff, but it also
looks complicated. Why shouldn’t I just use a basic R script for the little R program I’m
writing?” If that’s what you’re thinking, you have a valid point. Quarto files are slightly more
complicated than basic R scripts. However, after reading the sections below, we think you will
find that getting started with Quarto doesn’t have to be super complicated and the benefits
provided make the initial investment in learning Quarto worth your time.

8.3 Create a Quarto file

RStudio makes it very easy to create your own Quarto file, of which there are several types.
In this chapter, we’re going to show you how to create a Quarto file that can be rendered to
an HTML file and viewed in your web browser.

The process is actually really similar to the process we used to create an R script. Start by
clicking on the icon shown below in Figure 8.4.

As before, we’ll be presented with a dropdown box that lists a bunch of different file types for
us to choose from. This time, we’ll click Quarto Document instead of R script. Figure 8.5

Next, a dialogue box will pop up with some options for us. For now, we will just give our
Quarto document a super creative title – “Text Quarto” – and make sure the default HTML

133

https://Quarto.org/docs/gallery/


Figure 8.4: Click the new file icon.

Figure 8.5: New source file options.

134



format is selected. Finally, we will click the Create button in the bottom right-hand corner
of the dialogue box.

Figure 8.6: New Quarto document options.

A new Quarto file will appear in the RStudio source pane after we click the Create button.
This Quarto file includes some example text and code meant to help us get started. We are
typically going to erase all the example stuff and write our own text and code, but Figure 8.7
highlights some key components of Quarto files for now.

First, notice lines 1 through 6 in the example above. These lines make up something called the
YAML header (pronounced yamel). It isn’t important for us to know what YAML means,
but we do need to know that this is one of the defining features of Quarto files. We’ll talk
more about the details of the YAML header soon.

Second, notice lines 16 through 18. These lines make up something called an R code chunk.
Code chunks in Quarto files always start with three backticks ( ‘ ) and a pair of curly braces
({}), and they always end with three more backticks. We know that this code chunk contains
R code because of the “r” inside of the curly braces. We can also create code chunks that will
run other languages (e.g., python), but we won’t do that in this book. You can think of each
R code chunk as a mini R script. We’ll talk more about the details of code chunks soon.

Third, all of the other text is called Markdown. In Figure 8.7 above, the markdown text is
just filler text with some basic instructions for users. In a real project we would use formatted
text like this to add context around our code. For now, you can think of this as being very

135



Figure 8.7: The ‘Test Quarto’ file in the RStudio source pane.

similar to the comments we wrote in our R scripts, but markdown allows us to do lots of cool
things that the comments in our R scripts aren’t able to do. For example, line 6 has a link
to a website embedded in it, line 8 includes a heading (i.e., ## Quarto), and line 14 includes
text that is being formatted (the orange text surrounded by two asterisks). In this case, the
text is being bolded.

And that is all we have to do to create a basic Quarto file. Next, we’re going to give you a few
more details about each of the key components of the Quarto file that we briefly introduced
above.

8.4 YAML headers

The YAML header is unlike anything we’ve seen before. The YAML header always begins and
ends with dash-dash-dash (---) typed on its own line (1 & 6 in Figure 8.7). The code written
inside the YAML header generally falls into two categories:

1. Values to be rendered in the Quarto file. For example, in Figure 8.7 we told Quarto to
title our document “Test Quarto”. The title is added to the file by adding the title
keyword, followed by a colon (:), followed by a character string wrapped in quotes.
Examples of other values we could have added include author and date.

136



2. Instructions that tell Quarto how to process the file. What do we mean by that? Well,
remember the Quarto gallery you saw earlier? That gallery includes Word documents,
PDF documents, websites, and more. But all of those different document types started as
Quarto file similar to the one in Figure 8.7. Quarto will create a PDF document, a Word
document, or a website from the Quarto file based, in part, on the instructions we give
it inside the YAML header. For example, the YAML header in Figure 8.7 tells Quarto
to create an HTML file from our Quarto file. This output type is selected by adding the
format keyword, followed by a colon (:), followed by the html keyword. Further, we
added the embed-resources: true option to our HTML format. Including that option
makes it possible for us to send a single HTML file to others with all the supporting files
embedded.

What does an HTML file look like? Well, if you hit the Render button in RStudio:

Figure 8.8: RStudio’s render button. Only visible when a Quarto file is open.

R will ask you to save your Quarto file. After you save it, R will automatically create (or
render) a new HTML file and save it in the same location where your Quarto file is saved.
Additionally, a little browser window, like Figure 8.9 will pop up and give you a preview of
what the rendered HTML file looks like.

Notice all the formatting that was applied when R rendered the HTML file. For example, the
title – “Test Quarto” – is in big bold letters at the top of the screen, The headings – Quarto
and Running code – are also written in a large bold font with a faint line underneath them,

137

https://Quarto.org/docs/gallery/


Figure 8.9: An HTML file created using a Quarto file.

the link to the Quarto website is now blue and clickable, and the word “Render” is written in
bold font.

We can imagine that this section may seem a little confusing to some readers right now. If so,
don’t worry. You don’t really need to understand the YAML header at this point. Remember,
when you create a new Quarto file in the manner we described above, the YAML header is
already there. You will probably want to change the title, but that may be the only change
you make for now.

8.5 R code chunks

As we said above, R code chunks always start out with three backticks ( ‘ ) and a pair of curly
braces ({}) with an “r” in them ({r}), and they always end with three more backticks. Typing
that over and over can be tedious, so RStudio provides a keyboard shortcut for inserting R
code chunks into our Quarto files.

On MacOS type option + command + i.

On Windows type control + alt + i

Inside the code chunk, we can type anything that we would otherwise type in the console
or in an R script – including comments. We can then click the little green arrow in the top

138



right corner of the code chunk to submit it to R and see the result (see the play button in
Figure 8.7).

Alternatively, we can run the code in the code chunk by typing shift + command + return
on MacOS or shift + control + enter on Windows. If we want to submit a small section
of code in a code chunk, as opposed to all of the code in the code chunk, we can use our
mouse to highlight just the section of code we want to run and type control + return on
MacOS or control + enter on Windows. There are also options to run all code chunks in
the Quarto file, all code chunks above the current code chunk, and all code chunks below the
current chunk. You can access these, and other, run options using the Run button in the top
right-hand corner of the Quarto file in RStudio (see Figure 8.10 below).

Figure 8.10: The run button in RStudio.

8.6 Markdown

Many readers have probably heard of HTML and CSS before. HTML stands for hypertext
markup language and CSS stands for cascading style sheets. Together, HTML and CSS are
used to create and style every website you’ve ever seen. HTML files created from our Quarto
files are no different. They will open in any web browser and behave just like any other website.
Therefore, we can manipulate and style them using HTML and CSS just like any other website.
However, it takes most people a lot of time and effort to learn HTML and CSS. So, markdown

139



was created as an easier-to-use alternative. Think of it as HTML and CSS lite. It can’t fully
replace HTML and CSS, but it is much easier to learn, and you can use it to do many of
the main things you might want to do with HTML and CSS. For example, Figure 8.7 and
Figure 8.9 we saw that wrapping our text with two asterisks (**) bolds it.

There are a ton of other things we can do with markdown, and we recommend checking out
Quarto’s markdown basics website to learn more. The website covers a lot and may feel
overwhelming at first. So, we suggest just play around with some of the formatting options
and get a feel for what they do. Having said that, it’s totally fine if you don’t try to tackle
learning markdown syntax right now. You don’t really need markdown to follow along with
the rest of the book. However, we still suggest using Quarto files for writing, saving, modifying,
and sharing your R code.

8.6.1 Markdown headings

While we are discussing markdown, we would like to call special attention to markdown head-
ings. We briefly glazed over them above, but we find that beginning R users typically benefit
from a slightly more detailed discussion. Think back to the ## Quarto on line 8 of Figure 8.7.
This markdown created a heading – text that stands out and breaks our document up into
sections. We can create headings by beginning a line in our Quarto document with one or
more hash symbols (#), followed by a space, and then our heading text. Headings can be
nested underneath each other in the same way you might nest topics in a bulleted list. For
example:

• Animals

– Dog
∗ Lab
∗ Yorkie

– Cat

• Plants

– Flowers
– Trees

∗ Oak

Nesting list items this way organizes our list and conveys information that would otherwise
require explicitly writing out more text. For example, that a lab is a type of dog and that
dogs are a type of animal. Thoughtfully nesting our headings in our Quarto files can have
similar benefits. So, how do we nest our headings? Great question! Quarto and RStudio will
automatically nest them based on the number of hash symbols we use (between 1 and 6). In
the example above, ## Quarto it is a second-level heading. We know this because the line

140

https://Quarto.org/docs/authoring/markdown-basics.html


begins with two hash symbols. Figure 8.11 below shows how we might organize a Quarto file
for a data analysis project into nested sections using markdown headings.

A really important benefit of organizing our Quarto file this way is that it allows us to use
RStudio’s document outline pane to quickly navigate around our Quarto file. In this trivial
example, it isn’t such a big deal. But it can be a huge time saver in a Quarto file with hundreds,
or thousands, of lines of code.

Figure 8.11: A Quarto file with nested headings.

As a final note on markdown headings, we find that new R users sometimes mix up comments
and headings. This is a really understandable mistake to make because both start with the
hash symbol. So, how do you know when typing a hash symbol will create a comment and
when it will create a heading?

• The hash symbol always creates comments in R scripts. R scripts don’t understand
markdown. Therefore, they don’t have markdown headings. R scripts only understand
comments, which begin with a hash symbol, and R code.

• The hash symbol always creates markdown headings in Quarto files when typed outside of
an R code chunk. Remember, everything in between the R code chunks in our Quarto files
is considered markdown by Quarto, and hash symbols create headings in the markdown
language.

141



• The hash symbol always creates comments in Quarto files when typed inside of an R
code chunk. Remember, we can think of each R code chunk as a mini R script, and in
R scripts, hash symbols create comments.

8.7 Summary

Quarto files bring together R code, formatted text, and media in a single file. We can use
them to make our lives easier when working on small projects that are just for us, and we can
use them to create large complex documents, websites, and applications that are intended for
much larger audiences. RStudio makes it easy for us to create and render Quarto files into
many different document types, and learning a little bit of markdown can help us format those
documents really nicely. We believe that Quarto files are a great default file type to use for
most projects and we encourage readers to review the Quarto website for more details (and
inspiration)!

142

https://Quarto.org/


9 R Projects

In previous chapters of this book, we learned how to use R Scripts and Quarto Files to create,
modify, save, and share our R code and results. However, in most real-world projects we will
actually create multiple different R scripts and/or Quarto files. Further, we will often have
other files (e.g., images or data) that we want to store alongside our R code files. Over time,
keeping up with all of these files can become cumbersome. R projects are a great tool for
helping us organize and manage collections of files. Another really important advantage to
organizing our files into R projects is that they allow us to use relative file paths instead of
absolute file paths, which we will discuss in detail later.

RStudio makes creating R projects really simple. For starters, let’s take a look at the top right
corner of our RStudio application window. Currently, we see an R project icon that looks like
little blue 3-dimensional box with an “R” in the middle. To the right of the R project icon, we
see words Project: (None). RStudio is telling us that our current session is not associated
with an R project.

143

../r_scripts/r_scripts.qmd
../Quarto_files/Quarto_files.qmd


To create a new R project, we just need to click the drop-down arrow next to the words
Project: (None) to open the projects menu. Then, we will click the New Project... op-
tion.

Doing so will open the new project wizard. For now, we will select the New Directory option.
We will discuss the other options later in the book.

144



Next, we will click the New Project option.

In the next window, we will have to make some choices and enter some information. The fist
thing we will have to do is name our project. We do so by entering a value in the Directory
name: box. Often, we can name our R project directory to match the name of the larger project

145



we are working on in a pretty natural way. If not, the name we choose for our project directory
should essentially follow the same guidelines that we use for object (variable) names, which
we will learn about soon. In this example, we went with the very creative my_first_project
project name.�

When we create our R project in a moment, RStudio will create a folder on our computer
where we can keep all of the files we need for our project. That folder will be named using
the name we entered in the Directory name: box in the previous step. So, the next thing
we need to do is tell R where on our computer to put the folder. We do so by clicking the
Browse... button and selecting a location. For this example, we chose to create the project
on our computer’s desktop.

Finally, we just click the Create Project button near the bottom-right corner of the New
Project Wizard.

Doing so will create our new R project in the location we selected in the Create project as
subdirectory of: text box in the new project wizard. In the screenshot below, we can see
that a folder was created on our computer’s desktop called my_first_project. Additionally,
there is one file inside of that folder named my_first_project that ends with the file extension
.Rproj (see red arrow 2 in the figure below).

146



This file is called an R project file. Every time we create an R project, RStudio will create
an R project file and add it to our project directory (i.e., the folder) for us. This file helps
RStudio track and organize our R project.

To easiest way to open the R project we just created is to double click the R project file –
my_first_project.Rproj. Doing so will open a new RStudio session along with all of the R
code files we had open last time we were working on our R project. Because this is our first
time opening our example R project, we won’t see any R code files.

Alternatively, we can open our R project by once again clicking the R project icon in the upper
right corner of an open RStudio session and then clicking the Open Project... option. This
will open a file selection window where we can select our R project directory and open it.

147



Finally, we will know that RStudio understands that we are working in the context of
our project because the words Project: (None) that we previously saw in the top right
corner of the RStudio window will be replaced with the project name. In this case,
my_first_project.

148



Now that we’ve created our R project, there’s nothing special we need to do to add other files
to it. We only need save files and folders for our project as we typically would. We just need
to make sure that we save them in our project directory (i.e., the folder). RStudio will take
care of the rest.

R projects are a great tool for organizing our R code and other complimentary files. Should we
use them every single time we use R? Probably not. So, when should we use them? Well, the
best – albeit somewhat unhelpful – answer is probably to use them whenever they are useful.
However, at this point in your R journey you may not have enough experience to know when
they will be useful and when they won’t. Therefore, we are going to suggest that create an R
project for your project if (1) your project will have more than one file and/or (2) more than
one person will be working on the R code in your project. As we alluded to earlier, organizing
our files into R projects allows us to use relative file paths instead of absolute file paths,
which will make it much easier for us to collaborate with others. File paths will be discussed
in detail later.

149



10 Coding Best Practices

At this point in the book, we’ve talked a little bit about what R is. We’ve also talked about
the RStudio IDE and took a quick tour around its four main panes. Finally, we wrote our first
little R program, which simulated and analyzed some data about a hypothetical class. Writing
and executing this R program officially made you an R programmer. �

However, you should know that not all R code is equally “good” – even when it’s equally valid.
What do we mean by that? Well, we already discussed the R interpreter and R syntax in the
chapter on speaking R’s language. Any code that uses R syntax that the R interpreter can
understand is valid R code. But, is the R interpreter the only one reading your R code? No
way! In epidemiology, we collaborate with others all the time! That collaboration is going to
be much more efficient and enjoyable when there is good communication – including R code
that is easy to read and understand. Further, you will often need to read and/or reuse code
you wrote weeks, months, or years after you wrote it. You may be amazed at how quickly
you forget what you did and/or why you did it that way. Therefore, in addition to writing
valid R code, this chapter is about writing “good” R code – code that easily and efficiently
communicates ideas to humans.

Of course, “good code” is inevitably somewhat subjective. Reasonable people can have a
difference of opinion about the best way to write code that is easy to read and understand.
Additionally, reasonable people can have a difference of opinion about when code is “good
enough.” For these reasons, we’re going to offer several “suggestions” about writing good R
code below, but only two general principles, which we believe most R programmers would
agree with.

10.1 General principles

1. Comment your code. Whether you intend to share your code with other people or
not, make sure to write lots of comments about what you are trying to accomplish in
each section of your code and why.

2. Use a style consistently. We’re going to suggest several guidelines for styling your
R code below, but you may find that you prefer to style your R code in a different way.
Whether you adopt our suggested style or not, please find or create a style that works
for you and your collaborators and use it consistently.

150

../speaking_r/speaking_r.qmd


10.2 Code comments

There isn’t a lot of specific advice that we can give here because comments are so idiosyncratic
to the task at hand. So, we think the best we can do at this point is to offer a few examples
for you to think about.

10.2.1 Defining key variables

As we will discuss below, variables should have names that are concise, yet informative. How-
ever, the data you receive in the real world will not always include informative variable names.
Even when someone has given the variables informative names, there may still be contextual
information about the variables that is important to understand for data management and
analysis. Some data sets will come with something called a codebook or data dictionary.
These are text files that contain information about the data set that are intended to provide
you with some of that more detailed information. For example, the survey questions that
were used to capture the values in each variable or what category each value in a categorical
variable represents. However, real data sets don’t always come with a data dictionary, and
even when they do, it can be convenient to have some of that contextual information close at
hand, right next to your code. Therefore, we will sometimes comment our code with informa-
tion about variables that are important for the analysis at hand. Here is an example from an
administrative data set we ww using for an analysis:

* **Case number definition**

- Case / investigation number.

* **Intake stage definition**

- An ID number assigned to the Intake. Each Intake (Report) has its
own number. A case may have more than one intake. For example, case # 12345
has two intakes associated with it, 9 days apart, each with their own ID
number. Each of the two intakes associated with this case have multiple
allegations.

* **Intake start definition**

- An intake is the submission or receipt of a report - a phone call or
web-based. The Intake Start Date refers to the date the staff member
opens a new record to begin recording the report.

151



10.2.2 What this code is trying to accomplish

Sometimes, it is obvious what a section of code literally does. but not so obvious why you’re
doing it. We often try to write some comments around our code about what it’s trying to
ultimately accomplish and why. For example:

## Standardize character strings

# Because we will merge this data with other data sets in the future based on
# character strings (e.g., name), we need to go ahead and standardize their
# formats here. This will prevent mismatches during the merges. Specifically,
# we:

# 1. Transform all characters to lower case
# 2. Remove any special characters (e.g., hyphens, periods)
# 3. Remove trailing spaces (e.g., "John Smith ")
# 4. Remove double spaces (e.g., "John Smith")

vars <- quos(full_name, first_name, middle_name, last_name, county, address, city)

client_data <- client_data %>%
mutate_at(vars(!!! vars), tolower) %>%
mutate_at(vars(!!! vars), stringr::str_replace_all, "[^a-zA-Z\\d\\s]", " ") %>%
mutate_at(vars(!!! vars), stringr::str_replace, "[[:blank:]]$", "") %>%
mutate_at(vars(!!! vars), stringr::str_replace_all, "[[:blank:]]{2,}", " ")

rm(vars)

10.2.3 Why we chose this particular strategy

In addition to writing comments about why we did something, we sometimes write comments
about why we did it instead of something else. Doing this can save you from having to relearn
lessons you’ve already learned through trial and error but forgot. For example:

### Create exact match dummy variables

* We reshape the data from long to wide to create these variables because it significantly decreases computation time compared to doing this as a group_by operation on the long data.

10.3 Style guidelines

UsInG c_o_n_s_i_s_t_e_n_t STYLE i.s. import-ant!

152



Good coding style is like using correct punctuation. You can manage without it,
but it sure makes things easier to read. As with styles of punctuation, there are
many possible variations… Good style is important because while your code only
has one author, it’ll usually have multiple readers. This is especially true when
you’re writing code with others. In that case, it’s a good idea to agree on a common
style up-front. Since no style is strictly better than another, working with others
may mean that you’ll need to sacrifice some preferred aspects of your style.5

Below, we outline the style that we and our collaborators typically use when writing R code
for a research project. It generally follows the Tidyverse style guide, which we strongly suggest
you read. Outside of our class, you don’t have to use our style, but you really should find or
create a style that works for you and your collaborators and use it consistently.

10.3.1 Comments

Please put a space in between the pound/hash sign and the rest of your text when writing
comments. For example, # here is my comment instead of #here is my comment. It just
makes the comment easier to read.

10.3.2 Object (variable) names

In addition to the object naming guidance given in the Tidyverse style guide, We suggest the
following object naming conventions.

10.3.3 Use names that are informative

Using names that are informative and easy to remember will make life easier for everyone who
uses your data – including you!

# Uninformative names - Don't do this
x1
var1

# Informative names
employed
married
education

153

https://style.tidyverse.org/
https://style.tidyverse.org/files.html#names


10.3.3.1 Use names that are concise

You want names to be informative, but you don’t want them to be overly verbose. Really long
names create more work for you and more opportunities for typos. In fact, we recommend
using a single word when you can.

# Write out entire name of the study the data comes from - Don't do this
womens_health_initiative

# Write out an acronym for the study the data comes from - assuming everyone
# will be familiar with this acronym - Do this
whi

10.3.3.2 Use all lowercase letters

Remember, R is case-sensitive, which means that myStudyData and mystudydata are different
things to R. Capitalizing letters in your file name just creates additional details to remember
and potentially mess up. Just keep it simple and stick with lowercase letters.

# All upper case - so aggressive - Don't use
MYSTUDYDATA

# Camel case - Don't use
myStudyData

# All lowercase - Use
my_study_data

10.3.3.3 Separate multiple words with underscores.

Sometimes you really just need to use multiple words to name your object. In those cases, we
suggested separating words with an underscore.

# Multiple words running together - Hard to read - Don't use
mycancerdata

# Camel case - easier to read, but more to remember and mess up - Don't use
myCancerData

# Separate with periods - easier to read, but doesn't translate well to many
# other languages. For example, SAS won't accept variable names with

154



# periods - Don't use
my.cancer.data

# Separate with underscores - Use
my_cancer_data

10.3.3.4 Prefix the names of similar variables

When you have multiple related variables, it’s good practice to start their variable names with
the same word. It makes these related variables easier to find and work with in the future if we
need to do something with all of them at once. We can sort our variable names alphabetically
to easily find find them. Additionally, we can use variable selectors like starts_with("name")
to perform some operation on all of them at once.

# Don't use
first_name
last_name
middle_name

# Use
name_first
name_last
name_middle

# Don't use
street
city
state

# Use
address_street
address_city
address_state

10.3.4 File Names

All the variable naming suggestons above also apply to file names. However, we make a few
additional suggestions specific to file names below.

155



10.3.4.1 Managing multiple files in projects

When you are doing data management and analysis for real-world projects you will typically
need to break the code up into multiple files. If you don’t, the code often becomes really
difficult to read and manage. Having said that, finding the code you are looking for when
there are 10, 20, or more separate files isn’t much fun either. Therefore, we suggest the
following (or similar) file naming conventions be used in your projects.

• Separate data cleaning and data analysis into separate files (typically, .R or .Rmd).

– Data cleaning files should be prefixed with the word “data” and named as follows
∗ data_[order number]_[purpose]

# Examples
data_01_import.Rmd
data_02_clean.Rmd
data_03_process_for_regression.Rmd

• Analysis files that do not directly create a table or figure should be prefixed with the
word “analysis” and named as follows

– analysis_[order number]_[brief summary of content]

# Examples
analysis_01_exploratory.Rmd
analysis_02_regression.Rmd

• Analysis files that DO directly create a table or figure should be prefixed with the word
“table” or “fig” respectively and named as follows

– table_[brief summary of content] or

– fig_[brief summary of content]

# Examples
table_network_characteristics.Rmd
fig_reporting_patterns.Rmd

Note

We sometimes do data manipulation (create variables, subset data, reshape data) in an
analysis file if that analysis (or table or chart) is the only analysis that uses the modified
data. Otherwise, we do the modifications in a separate data cleaning file.

156



• Images

– Should typically be exported as png (especially when they are intended for use
HTML files).

– Should typically be saved in a separate “img” folder under the project home
directory.

– Should be given a descriptive name.
∗ Example: histogram_heights.png, NOT fig_02.png.

– We have found that the following image sizes typically work pretty well for our
projects.

∗ 1920 x 1080 for HTML

∗ 770 x 360 for Word

• Word and PDF output files

– We typically save them in a separate “docs” folder under the project home directory.
– Whenever possible, we try to set the Word or PDF file name to match the name of

the R file that it was created in.
∗ Example: first_quarter_report.Rmd creates docs/first_quarter_report.pdf

• Exported data files (i.e., RDS, RData, CSV, Excel, etc.)

– We typically save them in a separate “data” folder under the project home directory.
– Whenever possible, we try to set the Word or PDF file name to match the name of

the R file that it was created in.
∗ Example: data_03_texas_only.Rmd creates data/data_03_texas_only.csv

157



11 Using Pipes

11.1 What are pipes?

� What are pipes? This |> is the pipe operator. As of version 4.1, the pipe operator is part
of base R. Prior to version 4.1, the pipe operator was only available from the magrittr. The
pipe imported from the magrittr package looked like %>% and you may still come across it in
R code – including in this book.

� What does the pipe operator do? In our opinion, the pipe operator makes your R code much
easier to read and understand.

� How does it do that? It makes your R code easier to read and understand by allowing you
to view your nested functions in the order you want them to execute, as opposed to viewing
them literally nested inside of each other.

You were first introduced to nesting functions in the Let’s get programming chapter. Recall
that functions return values, and the R language allows us to directly pass those returned
values into other functions for further calculations. We referred to this as nesting functions
and said it was a big deal because it allows us to do very complex operations in a scalable way,
without storing a bunch of unneeded intermediate objects in our global environment.

In that chapter, we also discussed a potential downside of nesting functions. Namely, our R
code can become really difficult to read when we start nesting lots of functions inside one
another.

Pipes allow us to retain the benefits of nesting functions without making our code really
difficult to read. At this point, we think it’s best to show you an example. In the code below
we want to generate a sequence of numbers, then we want to calculate the log of each of the
numbers, and then find the mean of the logged values.

# Performing an operation using a series of steps.
my_numbers <- seq(from = 2, to = 100, by = 2)
my_numbers_logged <- log(my_numbers)
mean_my_numbers_logged <- mean(my_numbers_logged)
mean_my_numbers_logged

[1] 3.662703

158

https://magrittr.tidyverse.org/


� Here’s what we did above:

• We created a vector of numbers called my_numbers using the seq() function.

• Then we used the log() function to create a new vector of numbers called
my_numbers_logged, which contains the log values of the numbers in my_numbers.

• Then we used the mean() function to create a new vector called mean_my_numbers_logged,
which contains the mean of the log values in my_numbers_logged.

• Finally, we printed the value of mean_my_numbers_logged to the screen to view.

The obvious first question here is, “why would I ever want to do that?” Good question! You
probably won’t ever want to do what we just did in the code chunk above, but we haven’t
learned many functions for working with real data yet and we don’t want to distract you with
a bunch of new functions right now. Instead, we want to demonstrate what pipes do. So, we’re
stuck with this silly example.

� What’s nice about the code above? We would argue that it is pretty easy to read because
each line does one thing and it follows a series of steps in logical order. First, create the
numbers. Second, log the numbers. Third, get the mean of the logged numbers.

� What could be better about the code above? All we really wanted was the mean value
of the logged numbers (i.e., mean_my_numbers_logged); however, on our way to getting
mean_my_numbers_logged we also created two other objects that we don’t care about –
my_numbers and my_numbers_logged. It took us time to do the extra typing required to
create those objects, and those objects are now cluttering up our global environment. It may
not seem like that big of a deal here, but in a real data analysis project these things can really
add up.

Next, let’s try nesting these functions instead:

# Performing an operation using nested functions.
mean_my_numbers_logged <- mean(log(seq(from = 2, to = 100, by = 2)))
mean_my_numbers_logged

[1] 3.662703

�Here’s what we did above:

• We created a vector of numbers called mean_my_numbers_logged by nesting the seq()
function inside of the log() function and nesting the log() function inside of the mean()
function.

• Then, we printed the value of mean_my_numbers_logged to the screen to view.

159



� What’s nice about the code above? It is certainly more efficient than the sequential step
method we used at first. We went from using 4 lines of code to using 2 lines of code, and we
didn’t generate any unneeded objects.

� What could be better about the code above? Many people would say that this code is harder
to read than than the the sequential step method we used at first. This is primarily due to
the fact that each line no longer does one thing, and the code no longer follows a sequence
of steps from start to finish. For example, the final operation we want to do is calculate the
mean, but the mean() function is the first function we see when we read the code.

Finally, let’s try see what this code looks like when we use pipes:

# Performing an operation using pipes.
mean_my_numbers_logged <- seq(from = 2, to = 100, by = 2) |>
log() |>
mean()

mean_my_numbers_logged

[1] 3.662703

�Here’s what we did above:

• We created a vector of numbers called mean_my_numbers_logged by passing the result of
the seq() function directly to the log() function using the pipe operator, and passing
the result of the the log() function directly to the mean() function using the pipe
operator.

• Then, we printed the value of mean_my_numbers_logged to the screen to view.

� As you can see, by using pipes we were able to retain the benefits of performing the operation
in a series of steps (i.e., each line of code does one thing and they follow in sequential order)
and the benefits of nesting functions (i.e., more efficient code).

The utility of the pipe operator may not be immediately apparent to you based on this very
simple example. So, next we’re going to show you a little snippet of code from one of our
research projects. In the code chunk that follows, the operation we’re trying to perform on the
data is written in two different ways – without pipes and with pipes. It’s very unlikely that
you will know what this code does, but that isn’t really the point. Just try to get a sense of
which version is easier for you to read.

# Nest functions without pipes
responses <- select(ungroup(filter(group_by(filter(merged_data, !is.na(incident_number)), incident_number), row_number() == 1)), date_entered, detect_data, validation)

# Nest functions with pipes

160



responses <- merged_data |>
filter(!is.na(incident_number)) |>
group_by(incident_number) |>
filter(row_number() == 1) |>
ungroup() |>
select(date_entered, detect_data, validation)

What do you think? Even without knowing what this code does, do you feel like one version
is easier to read than the other?

11.2 How do pipes work?

Perhaps we’ve convinced you that pipes are generally useful. But, it may not be totally obvious
to you how to use them. They are actually really simple. Start by thinking about pipes as
having a left side and a right side.

Figure 11.1: Pipes have a left side and a right side.

The thing on the right side of the pipe operator should always be a function.

The thing on the left side of the pipe operator can be a function or an object.

161



Figure 11.2: A function should always be to the right of the pipe operator.

Figure 11.3: A function or an object can be to the left of the pipe operator.

162



Figure 11.4: Pipe the left side to the first argument of the function on the right side.

All the pipe operator does is take the thing on the left side and pass it to the first argument
of the function on the right side.

It’s a really simple concept, but it can also cause people a lot of confusion at first. So, let’s
take look at a couple more concrete examples.

Below we pass a vector of numbers to the to the mean() function, which returns the mean
value of those numbers to us.

mean(c(2, 4, 6, 8))

[1] 5

We can also use a pipe to pass that vector of numbers to the mean() function.

c(2, 4, 6, 8) |> mean()

[1] 5

163



So, the R interpreter took the thing on the left side of the pipe operator, stuck it into the
first argument of the function on the right side of the pipe operator, and then executed the
function. In this case, the mean() function doesn’t require any other arguments, so we don’t
have to write anything else inside of the mean() function’s parentheses. When we see c(2, 4,
6, 8) |> mean(), R sees mean(c(2, 4, 6, 8))

Here’s one more example. Pretty soon we will learn how to use the filter() function from
the dplyr package to keep only a subset of rows from our data frame. Let’s start by simulating
some data:

# Simulate some data
height_and_weight <- tibble(
id = c("001", "002", "003", "004", "005"),
sex = c("Male", "Male", "Female", "Female", "Male"),
ht_in = c(71, 69, 64, 65, 73),
wt_lbs = c(190, 176, 130, 154, 173)

)

height_and_weight

# A tibble: 5 x 4
id sex ht_in wt_lbs
<chr> <chr> <dbl> <dbl>

1 001 Male 71 190
2 002 Male 69 176
3 003 Female 64 130
4 004 Female 65 154
5 005 Male 73 173

In order to work, the filter() function requires us to pass two values to it. The first value
is the name of the data frame object with the rows we want to subset. The second is the
condition used to subset the rows. Let’s say that we want to do a subgroup analysis using
only the females in our data frame. We could use the filter() function like so:

# First value = data frame name (height_and_weight)
# Second value = condition for keeping rows (when the value of sex is Female)
filter(height_and_weight, sex == "Female")

# A tibble: 2 x 4
id sex ht_in wt_lbs
<chr> <chr> <dbl> <dbl>

1 003 Female 64 130
2 004 Female 65 154

164



�Here’s what we did above:

• We kept only the rows from the data frame called height_and_weight that had a value
of Female for the variable called sex using dplyr’s filter() function.

We can also use a pipe to pass the height_and_weight data frame to the filter() function.

# First value = data frame name (height_and_weight)
# Second value = condition for keeping rows (when the value of sex is Female)
height_and_weight |> filter(sex == "Female")

# A tibble: 2 x 4
id sex ht_in wt_lbs
<chr> <chr> <dbl> <dbl>

1 003 Female 64 130
2 004 Female 65 154

As you can see, we get the exact same result. So, the R interpreter took the thing on the left
side of the pipe operator, stuck it into the first argument of the function on the right side of
the pipe operator, and then executed the function. In this case, the filter() function needs
a value supplied to two arguments in order to work. So, we wrote sex == "Female" inside of
the filter() function’s parentheses. When we see height_and_weight |> filter(sex ==
"Female"), R sees filter(height_and_weight, sex == "Female").

Note

This pattern – a data frame piped into a function, which is usually then piped into one
or more additional functions is something that you will see over and over in this book.

Don’t worry too much about how the filter() function works. That isn’t the point here.
The two main takeaways so far are:

1. Pipes make your code easier to read once you get used to them.

2. The R interpreter knows how to automatically take whatever is on the left side of the
pipe operator and make it the value that gets passed to the first argument of the function
on the right side of the pipe operator.

11.2.1 Keyboard shortcut

Typing |> over and over can be tedious! Thankfully, RStudio provides a keyboard shortcut
for inserting the pipe operator into your R code.

165



On Mac type shift + command + m.

On Windows type shift + control + m

It may not seem totally intuitive at first, but this shortcut is really handy once you get used
to it.

11.2.2 Pipe style

As with all the code we write, style is an important consideration. We generally agree with
the recommendations given in the Tidyverse style guide. In particular:

1. We tend to use pipes in such a way that each line of code does one, and only one, thing.

2. If a line of code contains a pipe operator, the pipe operator should generally be the last
thing typed on the line.

3. The pipe operator should always have a space in front of it.

4. If the pipe operator isn’t the last thing typed on the line, then it should be have a space
after it too.

5. “If the function you’re piping into has named arguments (like mutate() or summarize()),
put each argument on a new line. If the function doesn’t have named arguments (like
select() or filter()), keep everything on one line unless it doesn’t fit, in which case
you should put each argument on its own line.”6

6. “After the first step of the pipeline, indent each line by two spaces. RStudio will auto-
matically put the spaces in for you after a line break following a |> . If you’re putting
each argument on its own line, indent by an extra two spaces. Make sure ) is on its own
line, and un-indented to match the horizontal position of the function name.”6

Each of these recommendations are demonstrated in the code below.

# Do this...
female_height_and_weight <- height_and_weight |> # Line 1
filter(sex == "Female") |> # Line 2
summarise( # Line 3

mean_ht = mean(ht_in), # Line 4
sd_ht = sd(ht_in) # Line 5

) |> # Line 6
print() # Line 7

166

https://style.tidyverse.org/pipes.html


# A tibble: 1 x 2
mean_ht sd_ht

<dbl> <dbl>
1 64.5 0.707

In the code above, we would first like you to notice that each line of code does one, and
only one, thing. Line 1 only assigns the result of the code pipeline to a new object –
female_height_and_weight, line 2 only keeps the rows in the data frame we want – rows
for females, line 3 only opens the summarise() function, line 4 only calculates the mean of the
ht_in column, line 5 only calculates the standard deviation of the ht_in column, line 6 only
closes the summarise() function, and line 7 only prints the result to the screen.

Second, we’d like you to notice that each line containing a pipe operator (i.e., lines 1, 2, and
6) ends with the pipe operator, and the pipe operators all have a space in front of them.

Third, we’d like you to notice that each named argument in the summarise() function is
written on its own line (i.e., lines 4 and 5).

Finally, we’d like you notice that each step of the pipeline is indented two spaces (i.e., lines
2, 3, 6, and 7), lines 4 and 5 are indented an additional two spaces because they contain
named arguments to the summarise() function, and that the summarise() function’s closing
parenthesis is on its own line (i.e., line 6), horizontally aligned with the “s” in “summarise(”.

Now compare that with the code in the code chunk below.

# Avoid this...
female_height_and_weight <- height_and_weight |> filter(sex == "Female") |>
summarise(mean_ht = mean(ht_in), sd_ht = sd(ht_in)) |> print()

# A tibble: 1 x 2
mean_ht sd_ht

<dbl> <dbl>
1 64.5 0.707

Although we get the same result as before, most people would agree that the code is harder
to quickly glance at and read. Further, most people would also agree that it would be more
difficult to add or rearrange steps when the code is written that way. As previously stated,
there is a certain amount of subjectivity in what constitutes “good” style. But, we will once
again reiterate that it is important to adopt some style and use it consistently. If you are a
beginning R programmer, why not adopt the tried-and-true styles suggested here and adjust
later if you have a compelling reason to do so?

167



11.3 Final thought on pipes

We think it’s important to note that not everyone in the R programming community is a fan
of using pipes. We hope that we’ve made a compelling case for why we use pipes, but we
acknowledge that it is ultimately a preference, and that using pipes is not the best choice in
all circumstances. Whether or not you choose to use the pipe operator is up to you; however,
we will be using them extensively throughout the remainder of this book.

168



Part III

Data Transfer

169



12 Introduction to Data Transfer

In previous chapters, we learned how to write our own simple R programs by directly creating
data frames in RStudio with the data.frame() function, the tibble() function, and the
tribble() function. We consider this to be a really fundamental skill to master because it
allows us to simulate data and it allows us to get data into R regardless of what format that
data is stored in (assuming we can “see” the stored data). In other words, if nothing else, we
can always resort to creating data frames this way.

In practice, however, this is not how people generally exchange data. You might recall that
in Section 2.2.1 Transferring data We briefly mentioned the need to get data into R that
others have stored in various different file types. These file types are also sometimes referred
to as file formats. Common examples encountered in epidemiology include database files,
spreadsheets, text files, SAS data sets, and Stata data sets.

Further, the data frames we’ve created so far don’t currently live in our global environment
from one programming session to the next. We haven’t yet learned how to efficiently store our
data long-term. We think the limitations of having to manually create a data frame every time
we start a new programming session are probably becoming obvious to you at this point.

170



In this part of the book, we will learn to import data stored in various different file types into
R for data management and analysis, we will learn to store R data frames in a more permanent
way so that we can come back later to modify or analyze them, and we will learn to export
data so that we may efficiently share it with others.

171



13 File Paths

In this part of the book, we will need to work with file paths. File paths are nothing more
than directions that tell R where to find, or place, data on our computer. In our experience,
however, some students are a little bit confused about file paths at first. So, in this chapter
we will briefly introduce what file paths are and how to find the path to a specific file on our
computer.

Let’s say that we want you to go to the store and buy a loaf of bread.

When we say, “go to the store”, this is really a shorthand way of telling you a much more
detailed set of directions.

172



Not only do you need to do all of the steps in the directions above, but you also need to use
the exact sequence above in order to arrive at the desired destination.

File paths aren’t so different. If we want R to “go get” the file called my_study_data.csv, we
have to give it directions to where that file is located. But the file’s location is not a geographic
location that involves making left and right turns. Rather, it is a location in your computer’s
file system that involves moving deeper into folders that are nested inside one another.

173



For example, let’s say that we have a folder on our desktop called “NTRHD” for “North Texas
Regional Health Department.

And, my_study_data.csv is inside the NTRHD folder.

174



We can give R directions to that data using the following path:

/Users/bradcannell/Desktop/NTRHD/my_study_data.csv (On Mac)

OR

C:/Users/bradcannell/Desktop/NTRHD/my_study_data.csv (On Windows)

Warning

Mac and Linux use forward slashes in file paths (/) by default. Windows uses backslashes
(\) in file paths by default. However, no matter which operating system we are using, we
should still use forward slashes in the file paths we pass to import and export functions in
RStudio. In other words, use forward slashes even if you are using Windows.

These directions may be read in a more human-like way by replacing the slashes with “and
then”. For example, /Users/bradcannell/Desktop/NTRHD/my_study_data.csv can be read
as “starting at the computer’s home directory, go into files that are accessible to the username
bradcannell, and then go into the folder called Desktop, and then go into the folder called
NTRHD, and then get the file called my_study_data.csv.”

175



Warning

You will need to change bradcannell to your username, unless your username also
happens to be bradcannell

Warning

Notice that we typed .csv at the end immediately after the name of our file
my_study_data. The .csv we typed is called a file extension. File extensions tell
the computer the file’s type and what programs can use it. In general, we MUST use the
full file name and extension when importing and exporting data in R.

Self Quiz:

Let’s say that we move my_study_data.csv to a different folder on our desktop called
research. What file path would we need to give R to tell it how to find the data?

/Users/bradcannell/Desktop/research/my_study_data.csv (On Mac)

OR

C:/Users/bradcannell/Desktop/research/my_study_data.csv (On Windows)

Now let’s say that we created a new folder inside of the research folder on our desktop called
my studies. Now what file path would we need to give R to tell it how to find the data?

/Users/bradcannell/Desktop/research/my studies/my_study_data.csv (On Mac)

OR

C:/Users/bradcannell/Desktop/research/my studies/my_study_data.csv (On Win-
dows)

13.1 Finding file paths

Now that we know how file paths are constructed, we can always type them manually. However,
typing file paths manually is tedious and error prone. Luckily, both Windows and MacOS have
shortcuts that allow us to easily copy and paste file paths into R.

On a Mac, we right-click on the file we want the path for and a drop-down menu will appear.
Then, click the Get Info menu option.

176



Now, we just copy the file path in the Where section of the get info window and paste it into
our R code.

Alternatively, as shown below, we can right click on the file we want the path for to open
the same drop-down menu shown above. But, if we hold down the alt/option key the Copy

177



menu option changes to Copy ... as Pathname. We can then left-click that option to copy
the path and paste it into our R code.

A similar method exists in Windows as well. First, we hold down the shift key and right click
on the file we want the path for. Then, we click Copy as path in the drop-down menu that
appears and paste the file path into our R code.

13.2 Relative file paths

All of the file paths we’ve seen so far in this chapter are absolute file paths (as opposed
to relative file paths). In this case, absolute just means that the file path begins with the
computer’s home directory. Remember, that the home directory in the examples above was
/Users/bradcannell. When we are collaborating with other people, or sometimes even when
we use more than one computer to work on our projects by ourselves, this can problematic.
Pause here for a moment and think about why that might be…

Using absolute file paths can be problematic because the home directory can be different on
every computer we use and is almost certainly different on one of our collaborator’s computers.
Let’s take a look at an example. In the screenshot below, we are importing an Excel spreadsheet
called form_20.xlsx into R as an R data frame named df. Don’t worry about the import
code itself. We will learn more about importing Microsoft Excel spreadsheets soon. For now,
just look at the file path we are passing to the read_excel() function. By doing so, we are
telling R where to go find the Excel file that we want to import. In this case, are we giving R
an absolute or relative file path?

178



We are giving R an absolute file path. We know this because it starts with the home directory
– /Users/bradcannell. Does our code work?

Yes! Our code does work. We can tell because there are no errors on the screen and the df
object we created looks as we expect it to when we print it to the screen. Great!!

Now, let’s say that our research assistant – Arthur Epi – is going to help us analyze this data
as well. So, we share this code file with him. What do you think will happen when he runs
the code on his computer?

179



When Arthur tries to import this file on his computer using our code, he gets an error.
The error tells him that the path /Users/bradcannell/Dropbox/02 Teaching/R4Epi
Textbook/my_first_project/data/form_20.xlsx doesn’t exist. And on Arthur’s computer
it doesn’t! The file form_20.xlsx exists, but not at the location /Users/bradcannell/Dropbox/02
Teaching/R4Epi Textbook/my_first_project/data/. This is because Arthur’s home direc-
tory is /Users/arthurepi not /Users/bradcannell. The directions are totally different!

To make this point clearer, let’s return to our directions to the store example from earlier in
the chapter. In that example, we only gave one list of directions to the store.

180



Notice that these directions assume that we are starting from our house. As long as we leave
from our house, they work great! But what happens if we are at someone else’s house and
we ask you to go to the store and buy a loaf of bread? You’d walk out the front door and
immediately discover that the directions don’t make any sense! You’d think, “Camp Bowie
Blvd.? Where is that? I don’t see that street anywhere!”

Did the store disappear? No, of course not! The store is still there. It’s just that our directions
to the store assume that we are starting from our house. If these directions were a file path,
they would be an absolute file path. They start all the way from our home and only work from
our home.

So, could Arthur just change the absolute file path to work on his computer? Sure! He could
do that, but then the file path wouldn’t work on Brad’s computer anymore. So, could there
just be two code chunks in the file – one for Brad’s computer and one for Arthur’s computer?
Sure! We could do that, but then one code chunk or the other will always throw an error on
someone’s computer. That will mean that we won’t ever be able to just run our R code in its
entirety. We’ll have to run it chunk-by-chunk to make sure we skip the chunk that throws an
error. And this problem would just be multiplied if we are working with 5, 10, or 15 other
collaborators instead of just 1. So, is there a better solution?

Yes! A better solution is to use a relative file path. Returning to our directions to the store
example, it would be like giving directions to the store from a common starting point that
everyone knows.

181



Notice that the directions are now from a common location, which isn’t somebody’s “home”.
Instead, it’s the corner of Camp Bowie Blvd. and Hulen St. You could even say that the
directions are now relative to a common starting place. Now, we can give these directions to
anyone and they can use them as long as they can find the corner of Camp Bowie and Hulen!
Relative file paths work in much the same way. We tell RStudio to anchor itself at a common
location that exists on everyone’s computer and then all the directions are relative to that
location. But, how can we do that? What location do all of our collaborators have on all of
their computers?

The answer is our R project’s directory (i.e., folder)! In order to effectively use relative file
paths in R, we start by creating an R project. If you don’t remember how to create R projects,
this would be a good time to go back and review Chapter 9.

In the screenshot below, we can see that our RStudio session is open in the context of our R
project called my_first_project.

182



In that context, R starts looking for files in our R project folder – no matter where we put the
R project folder on our computer.

For example, in the next screenshot, we can see that the R project folder we previously
created) (arrow 1), which is called my_first_project, is located on a computer’s desktop.
One way we can tell that it’s an R project is because it contains an R project file (arrow
2). We can also see that our R project now contains a folder, which contains an Excel file
called form_20.xlsx (arrow 3). Finally, we can see that we we’ve added a new Quarto/ file
called test_relative_links.Rmd (arrow 4). That file contains the code we wrote to import
form_20.xlsx as an R data frame.

183

../r_projects/projects.qmd


Because we are using an R project, we can tell R where to find form_20.xlsx using a relative
file path. That is, we can give R directions that begin at the R project’s directory. Remember,
that just means the folder containing the R project file. In this case, my_first_project.
Pause here for a minute. With that starting point in mind, how would you tell R to find
form_20.xlsx?

Well, you would say, “go into the folder called data, and then get the file called form_20.xlsx.”
Written as a file path, what would that look like?

It would look like data/form_20.xlsx. Let’s give it a try!

184



It works! We can tell because there are no errors on the screen and the df object we created
looks as we expect it to when we print it to the screen.

Now, let’s try it on Arthur’s computer and see what happens.

185



As you can see, the absolute path still doesn’t work on Arthur’s computer, but the relative
path does! It may not be obvious to you now, but this makes collaborating so much easier!

Let’s quickly recap what we needed to do to be able to use relative file paths.

1. We need to create an R project.

2. We needed to save our R code and our data inside of the R project directory.

3. We needed to share the R project folder with our collaborators. This part wasn’t shown,
but it was implied. We could have shared our R project by email. We could have shared
our R project by using a shared cloud-based file storage service like Dropbox, Google
Drive, or OneDrive. Better yet, we could have shared our R project using a GitHub
repository, which we will discuss later in the book.

4. We replaced all absolute file paths in our code with relative file paths. In general, we
should always use relative file paths if at all possible. It makes our code easier to read
and maintain, and it makes life so much easier for us when we collaborate with others!

Now that we know what file paths are and how to find them, let’s use them to import and
export data to and from R.

186

../r_projects/projects.qmd
../intro_git_github/intro_git_github.qmd
../intro_git_github/intro_git_github.qmd


14 Importing Plain Text Files

We previously learned how to manually create a data frame in RStudio with the data.frame()
function, the tibble() function, or the tribble() function. This will get the job done, but
it’s not always very practical – particularly when you have larger data sets.

Additionally, others will usually share data with you that is already stored in a file of some
sort. For our purposes, any file containing data that is not an R data frame is referred to as
raw data. In my experience, raw data is most commonly shared as CSV (comma separated
values) files or as Microsoft Excel files. CSV files will end with the .csv file extension and
Excel files end with the .xls or .xlsx file extensions. But remember, generally speaking R can
only manipulate and analyze data that has been imported into R’s global environment. In
this lesson, you will learn how to take data stored in several different common types of files
import them into R for use.

There are many different file types that one can use to store data. In this book, we will divide
those file types into two categories: plain text files and binary files. Plain text files are simple
files that you (a human) can directly read using only your operating system’s plain text editor
(i.e., Notepad on Windows or TextEdit on Mac). These files usually end with the .txt file
extension – one exception being the .csv extension. Specifically, in this chapter we will learn
to import the following variations of plain text files:

• Plain text files with data delimited by a single space.

• Plain text files with data delimited by tabs.

• Plain text files stored in a fixed width format.

• Plain text files with data delimited by commas - csv files.

Later, we will discuss importing binary files. For now, you can think of binary files as more
complex file types that can’t generally be read by humans without the use of special software.
Some examples include Microsoft Excel spreadsheets, SAS data sets, and Stata data sets.

187



14.1 Packages for importing data

Base R contains several functions that can be used to import plain text files; however, I’m
going to use the readr package to import data in the examples that follow. Compared to base
R functions for importing plain text files, readr:

• Is roughly 10 times faster.

• Doesn’t convert character variables to factors by default.

• Behaves more consistently across operating systems and geographic locations.

If you would like to follow along, I suggest that you go ahead and install and load readr
now.

library(readr)

14.2 Importing space delimited files

We will start by importing data with values are separated by a single space. Not necessarily
because this is the most common format you will encounter; in my experience it is not. But

188

https://readr.tidyverse.org/


it’s about as simple as it gets, and other types of data are often considered special cases of
files separated with a single space. So, it seems like a good place to start.

Note

In programming lingo, it is common to use the word delimited interchangeably with
the word separated. For example, you might say “values separated by a single space”
or you might say “a file with space delimited values.”

For our first example we will import a text file with values separated by a single space. The
contents of the file are the now familiar height and weight data.

You may click here to download this file to your computer.

single_space <- read_delim(
file = "single_delimited.txt",
delim = " "

)

Rows: 4 Columns: 4
-- Column specification --------------------------------------------------------
Delimiter: " "
chr (3): id, sex, ht_in
dbl (1): wgt_lbs

189

https://github.com/brad-cannell/r4epi/blob/master/chapters/importing_plain_text/single_delimited.txt


i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.

single_space

# A tibble: 4 x 4
id sex ht_in wgt_lbs
<chr> <chr> <chr> <dbl>

1 001 Male 71 190
2 002 Male . 176
3 003 Female 64 130
4 004 Female 65 154

�Here’s what we did above:

• We used readr’s read_delim() function to import a data set with values that are de-
limited by a single space. Those values were imported as a data frame, and we assigned
that data frame to the R object called single_space.

• You can type ?read_delim into your R console to view the help documentation for this
function and follow along with the explanation below.

• The first argument to the read_delim() function is the file argument. The value
passed to the file argument should be a file path that tells R where to find the data set
on your computer.

• The second argument to the read_delim() function is the delim argument. The value
passed to the delim argument tells R what character separates each value in the data
set. In this case, a single space separates the values. Note that we had to wrap the single
space in quotation marks.

• The readr package imported the data and printed a message giving us some informa-
tion about how it interpreted column names and column types. In programming lingo,
deciding how to interpret the data that is being imported is called parsing the data.

– By default, readr will assume that the first row of data contains variable names
and will try to use them as column names in the data frame it creates. In this case,
that was a good assumption. We want the columns to be named id, sex, ht_in,
and wgt_lbs. Later, we will learn how to override this default behavior.

– By default, readr will try to guess what type of data (e.g., numbers, character
strings, dates, etc.) each column contains. It will guess based on analyzing the
contents of the first 1,000 rows of the data. In this case, readr’s guess was not

190



entirely correct (or at least not what we wanted). readr correctly guessed that the
variables id and sex should be character variables, but incorrectly guessed that
ht_in should be a character variable as well. Below, we will learn how to fix this
issue.

Warning

Make sure to always include the file extension in your file paths. For example, using
“/single_delimited” instead of “/single_delimited.txt” above (i.e., no .txt) would have
resulted in an error telling you that the filed does not exist.

14.2.1 Specifying missing data values

In the previous example, readr guessed that the variable ht_in was a character variable. Take
another look at the data and see if you can figure out why?

Did you see the period in the third value of the third row? The period is there because
this value is missing, and a period is commonly used to represent missing data. However, R
represents missing data with the special NA value – not a period. So, the period is just a
regular character value to R. When R reads the values in the ht_in column, it decides that it
can easily turn the numbers into character values, but it doesn’t know how to turn the period
into a number. So, the column is parsed as a character vector.

191



But as we said, this is not what we want. So, how do we fix it? Well, in this case, we will
simply need to tell R that missing values are represented with a period in the data we are
importing. We do that by passing that information to the na argument of the read_delim()
function:

single_space <- read_delim(
file = "single_delimited.txt",
delim = " ",
na = "."

)

Rows: 4 Columns: 4
-- Column specification --------------------------------------------------------
Delimiter: " "
chr (2): id, sex
dbl (2): ht_in, wgt_lbs

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.

single_space

# A tibble: 4 x 4
id sex ht_in wgt_lbs
<chr> <chr> <dbl> <dbl>

1 001 Male 71 190
2 002 Male NA 176
3 003 Female 64 130
4 004 Female 65 154

�Here’s what we did above:

• By default, the value passed to the na argument of the read_delim() function is c("",
"NA"). This means that R looks for nothing (i.e., a value should be there but isn’t - this
really doesn’t make sense when the delimiter is a single space) or an NA.

• We told R to look for a period to represent missing data instead of a nothing or an NA
by passing the period character to the na argument.

• It’s important to note that changing the value of the na argument does not change the
way R represents missing data in the data frame that is created. It only tells R how to
identify missing values in the raw data that we are importing. In the R data frame that
is created, missing data will still be represented with the special NA value.

192



14.3 Importing tab delimited files

Sometimes you will encounter plain text files that contain values separated by tab characters
instead of a single space. Files like these may be called tab separated value or tsv files, or
they may be called tab-delimited files.

To import tab separated value files in R, we use a variation of the same program we just saw.
We just need to tell R that now the values in the data will be delimited by tabs instead of a
single space.

You may click here to download this file to your computer.

tab <- read_delim(
file = "tab.txt",
delim = "\t"

)

Rows: 4 Columns: 4
-- Column specification --------------------------------------------------------
Delimiter: "\t"
chr (2): id, sex
dbl (2): ht_in, wgt_lbs

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.

193

https://github.com/brad-cannell/r4epi/blob/master/chapters/importing_plain_text/tab.txt


tab

# A tibble: 4 x 4
id sex ht_in wgt_lbs
<chr> <chr> <dbl> <dbl>

1 001 Male 71 190
2 002 Male 69 176
3 003 Female 64 130
4 004 Female 65 154

�Here’s what we did above:

• We used readr’s read_delim() function to import a data set with values that are de-
limited by tabs. Those values were imported as a data frame, and we assigned that data
frame to the R object called tab.

• To tell R that the values are now separated by tabs, we changed the value we passed to
the delim argument to "\t". This is a special symbol that means “tab” to R.

I don’t personally receive tab separated values files very often. But, apparently, they are
common enough to warrant a shortcut function in the readr package. That is, instead of using
the read_delim() function with the value of the delim argument set to "\t", we can simply
pass our file path to the read_tsv() function. Under the hood, the read_tsv() function does
exactly the same thing as the read_delim() function with the value of the delim argument
set to "\t".

tab <- read_tsv("tab.txt")

Rows: 4 Columns: 4
-- Column specification --------------------------------------------------------
Delimiter: "\t"
chr (2): id, sex
dbl (2): ht_in, wgt_lbs

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.

tab

# A tibble: 4 x 4
id sex ht_in wgt_lbs

194



<chr> <chr> <dbl> <dbl>
1 001 Male 71 190
2 002 Male 69 176
3 003 Female 64 130
4 004 Female 65 154

14.4 Importing fixed width format files

Yet another type of plain text file we will discuss is called a fixed width format or fwf file.
Again, these files aren’t super common in my experience, but they can be sort of tricky when
you do encounter them. Take a look at this example:

As you can see, a hallmark of fixed width format files is inconsistent spacing between values.
For example, there is only one single space between the values 004 and Female in the fourth
row. But, there are multiple spaces between the values 65 and 154. Therefore, we can’t tell
R to look for a single space or tab to separate values. So, how do we tell R which characters
(including spaces) go with which variable? Well, if you look closely you will notice that all
variable values start in the same column. If you are wondering what I mean, try to imagine a
number line along the top of the data:

195



This number line creates a sequence of columns across your data, with each column being 1
character wide. Notice that spaces are also considered a character with width just like any
other. We can use these columns to tell R exactly which columns contain the values for each
variable.

You may click here to download this file to your computer.

Now, in this case we can just use readr’s read_table() function to import this data:

fixed <- read_table("fixed_width.txt")

-- Column specification --------------------------------------------------------
cols(
id = col_character(),
sex = col_character(),
ht_in = col_double(),
wgt_lbs = col_double()

)

Warning: 1 parsing failure.
row col expected actual file
1 -- 4 columns 5 columns 'fixed_width.txt'

196

https://github.com/brad-cannell/r4epi/blob/master/chapters/importing_plain_text/fixed_width.txt


fixed

# A tibble: 4 x 4
id sex ht_in wgt_lbs
<chr> <chr> <dbl> <dbl>

1 001 Male 71 190
2 002 Male 69 176
3 003 Female 64 130
4 004 Female 65 154

�Here’s what we did above:

• We used readr’s read_table() function to import data from a fixed width format file.
Those values were imported as a data frame, and we assigned that data frame to the R
object called fixed.

• You can type ?read_table into your R console to view the help documentation for this
function and follow along with the explanation below.

• By default, the read_table() function looks for values to be separated by one or more
columns of space.

However, how could you import this data if there weren’t always spaces in between data values.
For example:

197



In this case, the read_table() function does not give us the result we want.

fixed <- read_table("fixed_width_no_space.txt")

-- Column specification --------------------------------------------------------
cols(
id = col_character(),
sex = col_double(),
ht_inwgt_lbs = col_double()

)

Warning: 3 parsing failures.
row col expected actual file
1 -- 3 columns 4 columns 'fixed_width_no_space.txt'
3 -- 3 columns 2 columns 'fixed_width_no_space.txt'
4 -- 3 columns 2 columns 'fixed_width_no_space.txt'

fixed

# A tibble: 4 x 3
id sex ht_inwgt_lbs
<chr> <dbl> <dbl>

1 001Male 71 190
2 002Male 69 176
3 003Female64 130 NA
4 004Female65 154 NA

Instead, it parses the entire data set as a single character column. It does this because it
can’t tell where the values for one variable stop and the values for the next variable start.
However, because all the variables start in the same column, we can tell R how to parse the
data correctly. We can actually do this in a couple different ways:

You may click here to download this file to your computer.

14.4.1 Vector of column widths

One way to import this data is to tell R how many columns wide each variable is in the raw
data. We do that like so:

198

https://github.com/brad-cannell/r4epi/blob/master/chapters/importing_plain_text/fixed_width_no_space.txt


fixed <- read_fwf(
file = "fixed_width_no_space.txt",
col_positions = fwf_widths(

widths = c(3, 6, 5, 3),
col_names = c("id", "sex", "ht_in", "wgt_lbs")

),
skip = 1

)

Rows: 4 Columns: 4
-- Column specification --------------------------------------------------------

chr (2): id, sex
dbl (2): ht_in, wgt_lbs

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.

fixed

# A tibble: 4 x 4
id sex ht_in wgt_lbs
<chr> <chr> <dbl> <dbl>

1 001 Male 71 190
2 002 Male 69 176
3 003 Female 64 130
4 004 Female 65 154

�Here’s what we did above:

• We used readr’s read_fwf() function to import data from a fixed width format file.
Those values were imported as a data frame, and we assigned that data frame to the R
object called fixed.

• You can type ?read_fwf into your R console to view the help documentation for this
function and follow along with the explanation below.

• The first argument to the read_fwf() function is the file argument. The value passed
to the file argument should be file path that tells R where to find the data set on your
computer.

199



• The second argument to the read_fwf() function is the the col_positions argument.
The value passed to this argument tells R the width (i.e., number of columns) that
belong to each variable in the raw data set. This information is actually passed to the
col_positions argument directly from the fwf_widths() function. This is an example
of nesting functions.

– The first argument to the fwf_widths() function is the widths argument. The
value passed to the widths argument should be a numeric vector of column widths.
The column width of each variable should be calculated as the number of columns
that contain the values for that variable. For example, take another look at the
data with the imaginary number line:

All of the values for the variable id can be located within the first 3 columns of data. All of
the values for the variable sex can be located within the next 6 columns of data. All of the
values for the variable ht_in can be located within the next 5 columns of data. And, all of the
values for the variable wgt_lbs can be located within the next 3 columns of data. Therefore,
we pass the vector c(3, 6, 5, 3) to the widths argument.

The second argument to the fwf_widths() function is the col_names argument. The value
passed to the col_names argument should be a character vector of column names.

• The third argument of the read_fwf() function that we passed a value to is the skip
argument. The value passed to the skip argument tells R how many rows to ignore
before looking for data values in the raw data. In this case, we passed a value of one,
which told R to ignore the first row of the raw data. We did this because the first row

200



of the raw data contained variable names instead of data values, and we already gave R
variable names in the col_names argument to the fwf_widths() function.

14.4.2 Paired vector of start and end positions

Another way to import this data is to tell R how which columns each variable starts and stops
at in the raw data. We do that like so:

fixed <- read_fwf(
file = "fixed_width_no_space.txt",
col_positions = fwf_positions(

start = c(1, 4, 10, 15),
end = c(3, 9, 11, 17),
col_names = c("id", "sex", "ht_in", "wgt_lbs")

),
skip = 1

)

Rows: 4 Columns: 4
-- Column specification --------------------------------------------------------

chr (2): id, sex
dbl (2): ht_in, wgt_lbs

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.

fixed

# A tibble: 4 x 4
id sex ht_in wgt_lbs
<chr> <chr> <dbl> <dbl>

1 001 Male 71 190
2 002 Male 69 176
3 003 Female 64 130
4 004 Female 65 154

�Here’s what we did above:

• This time, we passed column positions to the col_positions argument of read_fwf()
directly from the fwf_positions() function.

201



– The first argument to the fwf_positions() function is the start argument. The
value passed to the start argument should be a numeric vector containing the first
column that contains a value for each variable. For example, take another look at
the data with the imaginary number line:

The first column that contains part of the value for the variable id can be located in column
1 of data. The first column that contains part of the value for the variable sex can be located
in column 4 of data. The first column that contains part of the value for the variable ht_in
can be located in column 10 of data. And, the first column that contains part of the value for
the variable wgt_lbs can be located in column 15 of data. Therefore, we pass the vector c(1,
4, 10, 15) to the start argument.

The second argument to the fwf_positions() function is the end argument. The value passed
to the end argument should be a numeric vector containing the last column that contains a
value for each variable. The last column that contains part of the value for the variable id can
be located in column 3 of data. The last column that contains part of the value for the variable
sex can be located in column 9 of data. The last column that contains part of the value for
the variable ht_in can be located in column 11 of data. And, the last column that contains
part of the value for the variable wgt_lbs can be located in column 17 of data. Therefore, we
pass the vector c(3, 9, 11, 17) to the end argument.

The third argument to the fwf_positions() function is the col_names argument. The value
passed to the col_names argument should be a character vector of column names.

202



14.4.3 Using named arguments

As a shortcut, either of the methods above can be written using named vectors. All this means
is that we basically combine the widths and col_names arguments to pass a vector of column
widths, or we combine the start, end, and col_names arguments to pass a vector of start and
end positions. For example:

Column widths:

read_fwf(
file = "fixed_width_no_space.txt",
col_positions = fwf_cols(

id = 3,
sex = 6,
ht_in = 5,
wgt_lbs = 3

),
skip = 1

)

# A tibble: 4 x 4
id sex ht_in wgt_lbs
<chr> <chr> <dbl> <dbl>

1 001 Male 71 190
2 002 Male 69 176
3 003 Female 64 130
4 004 Female 65 154

Column positions:

read_fwf(
file = "fixed_width_no_space.txt",
col_positions = fwf_cols(

id = c(1, 3),
sex = c(4, 9),
ht_in = c(10, 11),
wgt_lbs = c(15, 17)

),
skip = 1

)

203



Rows: 4 Columns: 4
-- Column specification --------------------------------------------------------

chr (2): id, sex
dbl (2): ht_in, wgt_lbs

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.

# A tibble: 4 x 4
id sex ht_in wgt_lbs
<chr> <chr> <dbl> <dbl>

1 001 Male 71 190
2 002 Male 69 176
3 003 Female 64 130
4 004 Female 65 154

14.5 Importing comma separated values files

The final type of plain text file that we will discuss is by far the most common type used in my
experience. I’m talking about the comma separated values or csv file. Unlike space and
tab separated values files, csv file names end with the .csv file extension. Although, csv files
are plain text files that can be opened in plain text editors such as Notepad for Windows or
TextEdit for Mac, many people view csv files in spreadsheet applications like Microsoft Excel,
Numbers for Mac, or Google Sheets.

204



Figure 14.1: A csv file viewed in a plain text editor.

Figure 14.2: A csv file viewed in Microsoft Excel.

205



Importing standard csv files into R with the readr package is easy and uses a syntax that is
very similar to read_delim() and read_tsv(). In fact, in many cases we only have to pass
the path to the csv file to the read_csv() function like so:

You may click here to download this file to your computer.

csv <- read_csv("comma.csv")

Rows: 4 Columns: 4
-- Column specification --------------------------------------------------------
Delimiter: ","
chr (1): sex
dbl (3): id, ht_in, wt_lbs

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.

csv

# A tibble: 4 x 4
id sex ht_in wt_lbs

<dbl> <chr> <dbl> <dbl>
1 1 Male 71 190
2 2 Male 69 176
3 3 Female 64 130
4 4 Female 65 154

�Here’s what we did above:

• We used readr’s read_csv() function to import a data set with values that are delimited
by commas. Those values were imported as a data frame, and we assigned that data
frame to the R object called csv.

• You can type ?read_csv into your R console to view the help documentation for this
function and follow along with the explanation below.

• Like read_tsv(), R is basically executing the read_delim() function with the value of
the delim argument set to "," under the hood. You could also use the read_delim()
function with the value of the delim argument set to "," if you wanted to.

206

https://github.com/brad-cannell/r4epi/blob/master/chapters/importing_plain_text/comma.csv


14.6 Additional arguments

For the most part, the data we imported in all of the examples above was relatively well
behaved. What I mean by that is that the data basically “looked” like each of the read_
functions were expecting it to “look”. Therefore, we didn’t have to adjust many of the various
read_ functions’ default values. The exception was changing the default value of the na
argument to the read_delim() function. However, all of the read_ functions above have
additional arguments that you may need to tweak on occasion. The two that I tend to adjust
most often are the col_names and col_types arguments. It’s impossible for me to think of
every scenario where you may need to do this, but I’ll walk through a basic example below,
which should be sufficient for you to get the idea.

Take a look at this csv file for a few seconds. It started as the same exact height and weight
data we’ve been using, but I made a few changes. See if you can spot them all.

When people record data in Microsoft Excel, they do all kinds of crazy things. In the screenshot
above, I’ve included just a few examples of things I see all the time. For example:

• Row one contains generic variable names that don’t really serve much of a purpose.

• Row two is a blank line. I’m not sure why it’s there. Maybe the study staff finds it
aesthetically pleasing?

• Row three contains some variable descriptions. These are actually useful, but they aren’t
currently formatted in a way that makes for good variable names.

207



• Row 7, column D is a missing value. However, someone wrote the word “Missing” instead
of leaving the cell blank.

• Column E also contains some notes for the data collection staff that aren’t really part
of the data.

All of the issues listed above are things we will have to deal with before we can analyze our
data. Now, in this small data set we could just fix these issues directly in Microsoft Excel and
then import the altered data into R with a simple call to read_csv() without adjusting any
options. However, that this is generally a really bad idea.

Warning

• I suggest that you don’t EVER alter your raw data. All kinds of crazy things
happen with data and data files. If you keep your raw data untouched and in a safe
place, worst case scenario you can always come back to it and start over. If you
start messing with the raw data, then you may lose the ability to recover what it
looked like in its original form forever. If you import the data into R before altering
it then your raw data stays preserved

• If you are going to make alterations in Excel prior to importing the data, I strongly
suggest making a copy of the raw data first. Then, alter the copy before importing
into R. But, even this can be a bad idea.

• If you make alterations to the data in Excel then there is generally no record of those
alterations. For example, let’s say you click in a cell and delete a value (maybe even
by accident), and then send me the csv file. I will have no way of knowing that a
value was deleted. When you alter the data directly in Excel (or any program that
doesn’t require writing code), it can be really difficult for others (including future
you) to know what was done to the data. You may be able manually compare the
altered data to the original data if you have access to both, but who wants to do
that – especially if the file is large? However, if you import the data into R as-is
and programmatically make alterations with R code, then your R code will, by
definition, serve a record of all alterations that were made.

• Often data is updated. You could spend a significant amount of time altering
your data in Excel only to be sent an updated file next week. Often, the manual
alterations you made in one Excel file are not transferable to another. However,
if all alterations are made in R, then you can often just run the exact same code
again on the updated data.

So, let’s walk through addressing these issues together. We’ll start by taking a look at our
results with all of read_csv’s arguments left at their default values.

You may click here to download this file to your computer.

208

https://github.com/brad-cannell/r4epi/blob/master/chapters/importing_plain_text/comma_complex.csv


csv <- read_csv("comma_complex.csv")

New names:
Rows: 6 Columns: 5
-- Column specification
-------------------------------------------------------- Delimiter: "," chr
(5): Var1...1, Var1...2, Var3, Var4, Notes
i Use `spec()` to retrieve the full column specification for this data. i
Specify the column types or set `show_col_types = FALSE` to quiet this message.
* `Var1` -> `Var1...1`
* `Var1` -> `Var1...2`

csv

# A tibble: 6 x 5
Var1...1 Var1...2 Var3 Var4 Notes
<chr> <chr> <chr> <chr> <chr>

1 <NA> <NA> <NA> <NA> <NA>
2 Study ID Participant Sex Paticipant Height (in) Participant Weight (lbs) <NA>
3 1 Male 71 190 <NA>
4 2 Male <NA> 176 <NA>
5 3 Female 64 130 <NA>
6 4 Female 65 Missing Call~

That is obviously not what we wanted. So, let’s start adjusting some of read_csv()’s defaults
– staring with the column names.

csv <- read_csv(
file = "comma_complex.csv",
col_names = c("id", "sex", "ht_in", "wgt_lbs")

)

Rows: 7 Columns: 5
-- Column specification --------------------------------------------------------
Delimiter: ","
chr (5): id, sex, ht_in, wgt_lbs, X5

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.

209



# A tibble: 7 x 5
id sex ht_in wgt_lbs X5
<chr> <chr> <chr> <chr> <chr>

1 Var1 Var1 Var3 Var4 Notes
2 <NA> <NA> <NA> <NA> <NA>
3 Study ID Participant Sex Paticipant Height (in) Participant Weight (lbs) <NA>
4 1 Male 71 190 <NA>
5 2 Male <NA> 176 <NA>
6 3 Female 64 130 <NA>
7 4 Female 65 Missing Call~

�Here’s what we did above:

• We passed a character vector of variable names to the col_names argument. Doing so
told R to use the words in the character vector as column names instead of the values
in the first row of the raw data (the default).

• Because the character vector of names only contained 4 values, the last column was
dropped from the data. R gives us a warning message to let us know. Specially, for each
row it says that it was expecting 4 columns (because we gave it 4 column names), but
actually found 5 columns. We’ll get rid of this message next.

csv <- read_csv(
file = "comma_complex.csv",
col_names = c("id", "sex", "ht_in", "wgt_lbs"),
col_types = cols(

col_character(),
col_character(),
col_integer(),
col_integer(),
col_skip()

)
)

Warning: One or more parsing issues, call `problems()` on your data frame for details,
e.g.:
dat <- vroom(...)
problems(dat)

csv

210



# A tibble: 7 x 4
id sex ht_in wgt_lbs
<chr> <chr> <int> <int>

1 Var1 Var1 NA NA
2 <NA> <NA> NA NA
3 Study ID Participant Sex NA NA
4 1 Male 71 190
5 2 Male NA 176
6 3 Female 64 130
7 4 Female 65 NA

�Here’s what we did above:

• We told R explicitly what type of values we wanted each column to contain. We did
so by nesting a col_ function for each column type inside the col() function, which is
passed directly to the col-types argument.

• You can type ?readr::cols into your R console to view the help documentation for this
function and follow along with the explanation below.

• Notice various column types (e.g., col_character()) are functions, and that they are
nested inside of the cols() function. Because they are functions, you must include the
parentheses. That’s just how the readr package is designed.

• Notice that the last column type we passed to the col_types argument was col_skip().
This tells R to ignore the 5th column in the raw data (5th because it’s the 5th column
type we listed). Doing this will get rid of the warning we saw earlier.

• You can type ?readr::cols into your R console to see all available column types.

• Because we told R explicitly what type of values we wanted each column to contain,
R had to drop any values that couldn’t be coerced to the type we requested. More
specifically, they were coerced to missing (NA). For example, the value Var3 that was
previously in the first row of the ht_in column. It was coerced to NA because R does
not know (nor do I) how to turn the character string “Var3” into an integer. R gives us
a warning message about this.

Next, let’s go ahead and tell R to ignore the first three rows of the csv file. They don’t contain
anything that is of use to us at this point.

csv <- read_csv(
file = "comma_complex.csv",
col_names = c("id", "sex", "ht_in", "wgt_lbs"),
col_types = cols(

col_character(),

211



col_character(),
col_integer(),
col_integer(),
col_skip()

),
skip = 3

)

Warning: One or more parsing issues, call `problems()` on your data frame for details,
e.g.:
dat <- vroom(...)
problems(dat)

csv

# A tibble: 4 x 4
id sex ht_in wgt_lbs
<chr> <chr> <int> <int>

1 1 Male 71 190
2 2 Male NA 176
3 3 Female 64 130
4 4 Female 65 NA

�Here’s what we did above:

• We told R to ignore the first three rows of the csv file by passing the value 3 to the skip
argument.

• The remaining warning above is R telling us that it still had to convert the word “Missing”
to an NA in the 4th row of the wgt_lbs column because it didn’t know how to turn the
word “Missing” into an integer. This is actually exactly what we wanted to happen, but
we can get rid of the warning by explicitly adding the word “Missing” to the list of values
R looks for in the na argument.

csv <- read_csv(
file = "comma_complex.csv",
col_names = c("id", "sex", "ht_in", "wgt_lbs"),
col_types = cols(

col_character(),
col_character(),
col_integer(),

212



col_integer(),
col_skip()

),
skip = 3,
na = c("", "NA", "Missing")

)

csv

# A tibble: 4 x 4
id sex ht_in wgt_lbs
<chr> <chr> <int> <int>

1 1 Male 71 190
2 2 Male NA 176
3 3 Female 64 130
4 4 Female 65 NA

Wow! This was kind of a long chapter! � But, you should now have the foundation you need
to start importing data in R instead of creating data frames manually. At least as it pertains
to data that is stored in plain text files. Next, we will learn how to import data that is stored
in binary files. Most of the concepts we learned in this chapter will apply, but we will get to
use a couple new packages �.

213



15 Importing Binary Files

In the last chapter we learned that there are many different file types that one can use to store
data. We also learned how to use the readr package to import several different variations of
plain text files into R.

In this chapter, we will focus on data stored in binary files. Again, you can think of binary
files as being more complex than plain text files and accessing the information in binary files
requires the use of special software. Some examples of binary files that we have frequently seen
used in epidemiology include Microsoft Excel spreadsheets, SAS data sets, and Stata data sets.
Below, we will learn how to import all three file types into R.

15.1 Packages for importing data

Technically, base R does not contain any functions that can be used to import the binary file
types discussed above. However, the foreign package contains functions that may be used to
import SAS data sets and Stata data sets, and is installed by default when you install R on

214



your computer. Having said that, we aren’t going to use the foreign package in this chapter.
Instead, we’re going to use the following packages to import data in the examples below. If
you haven’t done so already, we suggest that you go ahead and install these packages now.

• readxl. We will use the readxl package to import Microsoft Excel files.

• haven. We will use the haven package to import SAS and Stata data sets.

library(readxl)
library(haven)

15.2 Importing Microsoft Excel spreadsheets

We probably sent data in Microsoft Excel files more than any other file format. Fortunately,
the readxl package makes it really easy to import Excel spreadsheets into R. And, because
that package is maintained by the same people who create the readr package that you have
already seen, we think it’s likely that the readxl package will feel somewhat familiar right
from the start.

We would be surprised if any of you had never seen an Excel spreadsheet before – they are
pretty ubiquitous in the modern world – but we’ll go ahead and show a screenshot of our
height and weight data in Excel for the sake of completeness.

215

https://readxl.tidyverse.org/
https://haven.tidyverse.org/


All we have to do to import this spreadsheet into R as a data frame is passing the path to the
excel file to the path argument of the read_excel() function.

You may click here to download this file to your computer.

excel <- read_excel("excel.xlsx")

excel

# A tibble: 4 x 4
ID sex ht_in wgt_lbs
<chr> <chr> <dbl> <dbl>

1 001 Male 71 190
2 002 Male 69 176
3 003 Female 64 130
4 004 Female 65 154

�Here’s what we did above:

• We used readxl’s read_excel() function to import a Microsoft Excel spreadsheet. That
spreadsheet was imported as a data frame and we assigned that data frame to the R
object called excel.

Warning

Make sure to always include the file extension in your file paths. For example, using
“/excel” instead of “/excel.xlsx” above (i.e., no .xlsx) would have resulted in an error
telling you that the filed does not exist.

Fortunately for us, just passing the Excel file to the read_excel() function like this will
usually “just work.” But, let’s go ahead and simulate another situation that is slightly more
complex. Once again, we’ve received data from a team that is using Microsoft Excel to capture
some study data.

216

https://github.com/brad-cannell/r4epi/blob/master/chapters/importing_binary_files/excel.xlsx


As you can see, this data looks very similar to the csv file we previously imported. However,
it looks like the study team has done a little more formatting this time. Additionally, they’ve
added a couple of columns we haven’t seen before – date of birth and annual household
income.

As a final little wrinkle, the data for this study is actually the second sheet in this Excel file
(also called a workbook). The study team used the first sheet in the workbook as a data
dictionary that looks like this:

217



Once again, we will have to deal with some of the formatting that was done in Excel before
we can analyze our data in R.

You may click here to download this file to your computer.

We’ll start by taking a look at the result we get when we try to pass this file to the
read_excel() function without changing any of read_excel()’s default values.

excel <- read_excel("excel_complex.xlsx")

New names:
* `` -> `...2`
* `` -> `...3`

excel

# A tibble: 8 x 3
`Height and Weight Study\r\nData Dictionary` ...2 ...3
<chr> <chr> <chr>

1 <NA> <NA> <NA>
2 Variable Definition Type
3 Study ID Randomly assigned particip~ Cont~
4 Assigned Sex at Birth Sex the participant was as~ Dich~
5 Height (inches) Participant's height in in~ Cont~

218

https://github.com/brad-cannell/r4epi/blob/master/chapters/importing_binary_files/excel_complex.xlsx


6 Weight (lbs) Participant's weight in po~ Cont~
7 Date of Birth Participant's date of birth Date
8 Annual Household Income Participant's annual house~ Cont~

And, as we’re sure you saw coming, this isn’t the result we wanted. However, we can get
the result we wanted by making a few tweaks to the default values of the sheet, col_names,
col_types, skip, and na arguments of the read_excel() function.

excel <- read_excel(
path = "excel_complex.xlsx",
sheet = "Study Phase 1",
col_names = c("id", "sex", "ht_in", "wgt_lbs", "dob", "income"),
col_types = c(

"text",
"text",
"numeric",
"numeric",
"date",
"numeric",
"skip"

),
skip = 3,
na = c("", "NA", "Missing")

)

excel

# A tibble: 4 x 6
id sex ht_in wgt_lbs dob income
<chr> <chr> <dbl> <dbl> <dttm> <dbl>

1 001 Male 71 190 1981-05-20 00:00:00 46000
2 002 Male NA 176 1990-08-16 00:00:00 67000
3 003 Female 64 130 1980-02-21 00:00:00 49000
4 004 Female 65 NA 1983-04-12 00:00:00 89000

As we said, the readr package and readxl package were developed by the same people. So,
the code above looks similar to the code we used to import the csv file in the previous chapter.
Therefore, we’re not going to walk through this code step-by-step. Rather, we’re just going to
highlight some of the slight differences.

• You can type ?read_excel into your R console to view the help documentation for this
function and follow along with the explanation below.

219



• The first argument to the read_excel() function is the path argument. It serves the
same purpose as the file argument to read_csv() – it just has a different name.

• The sheet argument to the read_excel() function tells R which sheet of the Excel
workbook contains the data you want to import. In this case, the study team named
that sheet “Study Phase 1”. We could have also passed the value 2 to the sheet argument
because “Study Phase 1” is the second sheet in the workbook. However, we suggest using
the sheet name. That way, if the study team sends you a new Excel file next week with
different ordering, you are less likely to accidentally import the wrong data.

• The value we pass to the col_types argument is now a vector of character strings instead
of a list of functions nested in the col() function.

– The values that the col_types function will accept are "skip" for telling R to
ignore a column in the spreadsheet, "guess" for telling R to guess the variable type,
"logical" for logical (TRUE/FALSE) variables, “numeric” for numeric variables,
"date" for date variables, "text" for character variables, and "list" for everything
else.

– Notice that we told R to import income as a numeric variable. This caused the com-
mas and dollar signs to be dropped. We did this because keeping the commas and
dollar signs would have required us to make income a character variable (numeric
variables can only include numbers). If we had imported income as a character
variable, we would have lost the ability to perform mathematical operations on it.
Remember, it makes no sense to “add” two words together. Later, we will show
you how to add dollar signs and commas back to the numeric values if you want to
display them in your final results.

• We used the col_names, skip, and na arguments in exactly the same way we used them
in the read_csv function.

You should be able to import most of the data stored in Excel spreadsheets with just the few
options that we discussed above. However, there may be times were importing spreadsheets
is even more complicated. If you find yourself in that position, we suggest that you first check
out the readxl website here.

15.3 Importing data from other statistical analysis software

Many applications designed for statistical analysis allow you to save data in a binary format.
One reason for this is that binary data formats allow you to save metadata alongside your
data values. Metadata is data about the data. Using our running example, the data is about
the heights, weights, and other characteristics of our study participants. Metadata about
this data might include information like when this data set was created, or value labels that
make the data easier to read (e.g., the dollar signs in the income variable).

220

https://readxl.tidyverse.org/index.html


In our experience, you are slightly more likely to have problems importing binary files saved
from other statistical analysis applications than plain text files. Perhaps because they are
more complex, the data just seems to become corrupt and do other weird things more often
than is the case with plain text files. However, in our experience, it is also the case that when
we are able to import binary files created in other statistical analysis applications, doing so
requires less adjusting of default values. In fact, we will usually only need to pass the file path
to the correct read_ function.

Below, we will see some examples of importing binary files saved in two popular statistical
analysis applications – SAS and Stata. We will use the haven package to import both.

15.4 Importing SAS data sets

SAS actually allows users to save data in more than one type of binary format. Data can
be saved as SAS data sets or as SAS Transport files. SAS data set file names end with the
.sas7bdat file extension. SAS Transport file file names end with the .xpt file extension.

In order to import a SAS data set, we typically only need to pass the correct file path to
haven’s read_sas() function.

You may click here to download this file to your computer.

sas <- read_sas("height_and_weight.sas7bdat")

sas

# A tibble: 4 x 4
ID sex ht_in wgt_lbs
<chr> <chr> <dbl> <dbl>

1 001 Male 71 190
2 002 Male 69 176
3 003 Female 64 130
4 004 Female 65 154

�Here’s what we did above:

• We used haven’s read_sas() function to import a SAS data set. That data was imported
as a data frame and we assigned that data frame to the R object called sas.

221

https://github.com/brad-cannell/r4epi/blob/master/chapters/importing_binary_files/height_and_weight.sas7bdat


In addition to SAS data sets, data that has been altered in SAS can also be saved as a SAS
transport file. Some of the national, population-based public health surveys (e.g., BRFSS and
NHANES) make their data publicly available in this format.

You can download the 2018 BRFSS data as a SAS Transport file here. About halfway down
the webpage, there is a link that says, “2018 BRFSS Data (SAS Transport Format)”.

Clicking that link should download the data to your computer. Notice that the SAS Transport
file is actually stored inside a zip file. You can unzip the file first if you would like, but you
don’t even have to do that. Amazingly, you can pass the path to the zipped .xpt file directly
to the read_xpt() function like so:

brfss_2018 <- read_xpt("LLCP2018XPT.zip")

head(brfss_2018)

# A tibble: 6 x 275
`_STATE` FMONTH IDATE IMONTH IDAY IYEAR DISPCODE SEQNO `_PSU` CTELENM1

<dbl> <dbl> <chr> <chr> <chr> <chr> <dbl> <chr> <dbl> <dbl>
1 1 1 01052018 01 05 2018 1100 20180000~ 2.02e9 1
2 1 1 01122018 01 12 2018 1100 20180000~ 2.02e9 1
3 1 1 01082018 01 08 2018 1100 20180000~ 2.02e9 1
4 1 1 01032018 01 03 2018 1100 20180000~ 2.02e9 1
5 1 1 01122018 01 12 2018 1100 20180000~ 2.02e9 1

222

https://www.cdc.gov/brfss/annual_data/annual_2018.html


6 1 1 01112018 01 11 2018 1100 20180000~ 2.02e9 1
# i 265 more variables: PVTRESD1 <dbl>, COLGHOUS <dbl>, STATERE1 <dbl>,
# CELLFON4 <dbl>, LADULT <dbl>, NUMADULT <dbl>, NUMMEN <dbl>, NUMWOMEN <dbl>,
# SAFETIME <dbl>, CTELNUM1 <dbl>, CELLFON5 <dbl>, CADULT <dbl>,
# PVTRESD3 <dbl>, CCLGHOUS <dbl>, CSTATE1 <dbl>, LANDLINE <dbl>,
# HHADULT <dbl>, GENHLTH <dbl>, PHYSHLTH <dbl>, MENTHLTH <dbl>,
# POORHLTH <dbl>, HLTHPLN1 <dbl>, PERSDOC2 <dbl>, MEDCOST <dbl>,
# CHECKUP1 <dbl>, EXERANY2 <dbl>, SLEPTIM1 <dbl>, CVDINFR4 <dbl>, ...

�Here’s what we did above:

• We used haven’s read_xpt() function to import a zipped SAS Transport File. That
data was imported as a data frame and we assigned that data frame to the R object
called brfss_2018.

• Because this is a large data frame (437,436 observations and 275 variables), we used the
head() function to print only the first 6 rows of the data to the screen.

But, this demonstration actually gets even cooler. Instead of downloading the SAS Transport
file to our computer before importing it, we can actually sometimes import files, including
SAS Transport files, directly from the internet.

For example, you can download the 2017-2018 NHANES demographic data as a SAS Transport
file here

223

https://wwwn.cdc.gov/nchs/nhanes/search/datapage.aspx?Component=Demographics&CycleBeginYear=2017
https://wwwn.cdc.gov/nchs/nhanes/search/datapage.aspx?Component=Demographics&CycleBeginYear=2017


If you right-click on the link that says, “DEMO_J Data [XPT - 3.3 MB]”, you will see an
option to copy the link address.

Click “Copy Link Address” and then navigate back to RStudio. Now, all you have to do
is paste that link address where you would normally type a file path into the read_xpt()
function. When you run the code chunk, the read_xpt() function will import the NHANES
data directly from the internet (assuming you are connected to the internet). �

nhanes_demo <- read_xpt("https://wwwn.cdc.gov/Nchs/Data/Nhanes/Public/2017/DataFiles/DEMO_J.xpt")

head(nhanes_demo)

# A tibble: 6 x 46
SEQN SDDSRVYR RIDSTATR RIAGENDR RIDAGEYR RIDAGEMN RIDRETH1 RIDRETH3 RIDEXMON
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 93703 10 2 2 2 NA 5 6 2
2 93704 10 2 1 2 NA 3 3 1
3 93705 10 2 2 66 NA 4 4 2
4 93706 10 2 1 18 NA 5 6 2
5 93707 10 2 1 13 NA 5 7 2
6 93708 10 2 2 66 NA 5 6 2
# i 37 more variables: RIDEXAGM <dbl>, DMQMILIZ <dbl>, DMQADFC <dbl>,
# DMDBORN4 <dbl>, DMDCITZN <dbl>, DMDYRSUS <dbl>, DMDEDUC3 <dbl>,
# DMDEDUC2 <dbl>, DMDMARTL <dbl>, RIDEXPRG <dbl>, SIALANG <dbl>,

224



# SIAPROXY <dbl>, SIAINTRP <dbl>, FIALANG <dbl>, FIAPROXY <dbl>,
# FIAINTRP <dbl>, MIALANG <dbl>, MIAPROXY <dbl>, MIAINTRP <dbl>,
# AIALANGA <dbl>, DMDHHSIZ <dbl>, DMDFMSIZ <dbl>, DMDHHSZA <dbl>,
# DMDHHSZB <dbl>, DMDHHSZE <dbl>, DMDHRGND <dbl>, DMDHRAGZ <dbl>, ...

�Here’s what we did above:

• We used haven’s read_xpt() function to import a SAS Transport File directly from the
NHANES website. That data was imported as a data frame and we assigned that data
frame to the R object called nhanes_demo.

• Because this is a large data frame (9,254 observations and 46 variables), we used the
head() function to print only the first 6 rows of the data to the screen.

15.5 Importing Stata data sets

Finally, we will import a Stata data set (.dta) to round out our discussion of importing data
from other statistical analysis software packages. There isn’t much of anything new here – you
could probably have even guessed how to do this without us showing you.

You may click here to download this file to your computer.

stata <- read_stata("height_and_weight.dta")

stata

# A tibble: 4 x 4
ID sex ht_in wgt_lbs
<chr> <chr> <dbl> <dbl>

1 001 Male 71 190
2 002 Male 69 176
3 003 Female 64 130
4 004 Female 65 154

�Here’s what we did above:

• We used haven’s read_stata() function to import a Stata data set. That data was
imported as a data frame and we assigned that data frame to the R object called stata.

You now know how to write code that will allow you to import data stored in all of the file
formats that we will use in this book, and the vast majority of formats that you are likely to
encounter in your real-world projects. In the next section, We will introduce you to a tool in
RStudio that makes importing data even easier.

225

https://github.com/brad-cannell/r4epi/blob/master/chapters/importing_binary_files/height_and_weight.dta


16 RStudio’s Data Import Tool

In previous chapters, we learned how to programmatically import data into R. In this chap-
ter, we will briefly introduce you to RStudio’s data import tool. Conceptually, we won’t be
introducing anything you haven’t already seen before. We just want to make you aware of this
tool, which can be a welcomed convenience at times.

For this example, we will use the import tool to help us import the same height and weight
csv file we imported in the chapter on importing plain text files.

You may click here to download this file to your compter.

To open RStudio’s data import tool, click the Import Dataset dropdown menu near the top
of the environment pane.

Next, because this is a csv file, we will choose the From Text (readr) option from the drop-
down menu. The difference between From Text (base) and From Text (readr) is that From
Text (readr) will use functions from the readr package to import the data and From Text
(base) will use base R functions to import the data.

226

../importing_plain_text/importing_plain_text.qmd
https://www.dropbox.com/s/weaea47drw0iln5/comma.csv?dl=1


After you select a file type from the import tool dropdown menu, a separate data import
window will open.

At this point, you should click the browse button to locate the file you want to import.

227



Doing so will open your operating system’s file explorer window. Use that window to find and
select the file you want to import. Again, we am using comma.csv for this demonstration.

After selecting you file, there will be some changes in the data import window. Specifically,

• The file path to the raw data you are importing will appear in the File/URL field.

228



• A preview of how R is currently parsing that data will appear in the Data Preview field.

• Some or all of the import options will become available for you to select or deselect.

• The underlying code that R is currently using to import this data is displayed in the
Code Preview window.

• The copy to clipboard icon becomes clickable.

Importing this simple data set doesn’t require us to alter many of the import options. However,
we do want to point out that you can change the variable type by clicking in the column
headers in the Data Preview field. After clicking, a dropdown menu will display that allows
you to change variable types. This is equivalent to adjusting the default values passed to the
col_types argument of the read_csv() function.

We will go ahead and change the ht_in and wgt_lbs variables from type double to type integer
using the dropdown menu.

229



At this point, our data is ready for import. You can simply press the Import button in the
bottom-right corner of the data import window. However, we are going to suggest that you
don’t do that. Instead, we’re going to suggest that you click the clipboard icon to copy the
code displayed in the Code Preview window and then click the Cancel button.

Next, return to your R script or Quarto file and paste the code that was copied to your
clipboard. At this point, you can run the code as though you wrote it. More importantly, this
code is now a part of the record of how you conducted your data analysis. Further, if someone
sends you an updated raw data set, you may only need to update the file path in your code
instead of clicking around the data import tool again.

230



That concludes the portion of the book devoted to importing data. In the next chapter, we
will discuss strategies for exporting data so that you can store it in a more long-term way
and/or share it with others.

231



17 Exporting Data

The data frames we’ve created so far don’t currently live in our global environment from one
programming session to the next because we haven’t yet learned how to efficiently store our
data long-term. This limitation makes it difficult to share our data with others or even to
come back later to modify or analyze our data ourselves. In this chapter, you will learn to
export data from R’s memory to a file on your hard drive so that you may efficiently store it
or share it with others. In the examples that follow, we’re going to use this simulated data.

demo <- data.frame(
id = c("001", "002", "003", "004"),
age = c(30, 67, 52, 56),
edu = c(3, 1, 4, 2)

)

� Here’s what we did above:

• We created a data frame that is meant to simulate some demographic information about
4 hypothetical study participants.

• The first variable (id) is the participant’s study id.

• The second variable (age) is the participant’s age at enrollment in the study.

• The third variable (edu) is the highest level of formal education the participant completed.
Where:

– 1 = Less than high school

– 2 = High school graduate

– 3 = Some college

– 4 = College graduate

232



17.1 Plain text files

Most of readr’s read_ functions that were introduced in the importing plain text files chapter
have a write_ counterpart that allow you to export data from R into a plain text file.

Additionally, all of havens read_ functions that were introduced in the importing binary files
chapter have a write_ counterpart that allow you to export data from R into SAS, Stata, and
SPSS binary file formats.

Interestingly, readxl does not have a write_excel() function for exporting R data frames as
.xls or .xlsx files. However, the importance of this is mitigated by the fact that Excel can open
.csv files and readr contains a function (write_csv())for exporting data frames in the .csv
file format. If you absolutely have to export your data frame as a .xls or .xlsx file, there are
other R packages capable of doing so (e.g., xlsx).

So, with all these options what format should you choose? our answer to this sort of depends
on the answers to two questions. First, will this data be shared with anyone else? Second, will
we need any of the metadata that would be lost if we export this data to a plain text file?

Unless you have a compelling reason to do otherwise, we’re going to suggest that you always
export your R data frames as csv files if you plan to share your data with others. The reason
is simple. They just work. we can think of many times when someone sent me a SAS or Stata
data set and we wasn’t able to import it for some reason or the data didn’t import in the way
that we expected it to. we don’t recall ever having that experience with a csv file. Further,
every operating system and statistical analysis software application that we’re aware of is able
to accept csv files. Perhaps for that reason, they have become the closest thing to a standard
for data sharing that exists – at least that we’re aware of.

Exporting an R data frame to a csv file is really easy. The example below shows how to export
our simulated demographic data to a csv file on our computer’s desktop:

readr::write_csv(demo, "demo.csv")

�Here’s what we did above:

• We used readr’s write_csv() function to export a data frame called demo in our global
environment to a csv file on our desktop called demo.csv.

• You can type ?write_csv into your R console to view the help documentation for this
function and follow along with the explanation below.

• The first argument to the write_csv() function is the x argument. The value passed to
the x argument should be a data frame that is currently in our global environment.

• The second argument to the write_csv() function is the path argument. The value
passed to the path should be a file path telling R where to create the new csv file.

233

../importing_plain_text/importing_plain_text.qmd
../importing_binary_files/importing_binary_files.qmd


– You name the csv file directly in the file path. Whatever name you write after the
final slash in the file path is what the csv file will be named.

– As always, make sure you remember to include the file extension in the file path.

Even if you don’t plan on sharing your data, there is another benefit to saving your data as a
csv file. That is, it’s easy to open the file and take a quick peek if you need to for some reason.
You don’t have to open R and load the file. You can just find the file on your computer,
double-click it, and quickly view it in your text editor or spreadsheet application of choice.

However, there is a downside to saving your data frames to a csv file. In general, csv files
don’t store any metadata, which can sometimes be a problem (or a least a pain). For example,
if you’ve coerced several variables to factors, that information would not be preserved in the
csv file. Instead, the factors will be converted to character strings. If you need to preserve
metadata, then you may want to save you data frames in a binary format.

17.2 R binary files

In the chapter on importing binary files we mentioned that most statistical analysis software
allows you to save your data in a binary file format. The primary advantage to doing so is that
potentially useful metadata is stored alongside your analysis data. We were first introduced to
factor vectors in Chapter 5. There, we saw how coercing some of your variables to factors can
be useful. However, doing so requires R to store metadata along with the analysis data. That
metadata would be lost if you were to export your data frame to a plain text file. This is an
example of a time when we may want to consider exporting our data to a binary file format.

R actually allows you to save your data in multiple different binary file formats. The two
most popular are the .Rdata format and the .Rds format. we’re going to suggest that you use
the .Rds format to save your R data frames. Exporting to this format is really easy with the
readr package.

The example below shows how to export our simulated demographic data to an .Rds file on
our computer’s desktop:

readr::write_rds(demo, "demo.rds")

�Here’s what we did above:

• We used readr’s write_rds() function to export a data frame called demo in our globabl
environment to an .Rds file on our desktop called demo.rds.

• You can type ?write_rds into your R console to view the help documentation for this
function and follow along with the explanation below.

234

../importing_binary_files/importing_binary_files.qmd


• The first argument to the write_rds() function is the x argument. The value passed to
the x argument should be a data frame that is currently in our global environment.

• The second argument to the write_csv() function is the path argument. The value
passed to the path should be a file path telling R where to create the new .Rds file.

– You name the .Rds file directly in the file path. Whatever name you write after the
final slash in the file path is what the .Rds file will be named.

– As always, make sure you remember to include the file extension in the file path.

To load the .Rds data back into your global environment, simply pass the path to the .Rds
file to readrs read_rds() function:

demo <- readr::read_rds("demo.rds")

There is a final thought we want to share on exporting data frames. When we got to the end
of this chapter, it occurred to me that the way we wrote it may give the impression that that
you must choose to export data frames as plain text files or binary files, but not both. That
isn’t the case. we frequently export our data as a csv file that we can easily open and view
and/or share with others, but also export it to an .Rds file that retains useful metadata we
might need the next time we return to our analysis. we suppose there could be times that
your files are so large that this is not an efficient strategy, but that is generally not the case
in our projects.

235



Part IV

Descriptive Analysis

236



18 Introduction to Descriptive Analysis

18.1 What is descriptive analysis and why would we do it?

So, we have all this data that tells us all this information about different traits or characteristics
of the people for whom the data was collected. For example, if we collected data about the
students in this course, we may have information about how tall you are, about what kind of
insurance you have, and about what your favorite color is.

But, unless you’re a celebrity, or under investigation for some reason, it’s unlikely that many
people outside of your friends and family care to know any of this information about you, per
se. Usually they want to know this information about the typical person in the population,
or subpopulation, to which you belong. Or, they want to know more about the relationship
between people who are like you in some way and some outcome that they are interested in.

For example: We typically aren’t interested in knowing that student 1002 (above) is 67.93
inches tall. We are typically more interested in knowing things like the average height of the
class – [’r mean(height_in) |> round(2)].

Before we can make any inferences or draw any conclusions, we must (or at least should)
begin by conducting descriptive analysis of our data. This is also sometimes referred to as
exploratory analysis. There are at least three reasons why we want to start with a descriptive
analysis:

1. We can use descriptive analysis to uncover errors in our data.

2. It helps us understand the distribution of values in our variables.

3. Descriptive analysis serve as a starting point for understanding relationships between our
variables.

18.2 What kind of descriptive analysis should we perform?

When conducting descriptive analysis, the method you choose will depend on the type of
data you’re analyzing. At the most basic level, variables can be described as numerical or
categorical.

237



Numeric variables can then be further divided into continuous and discrete - the distinction
being whether the variable can take on a continuum of values, or only set of certain values.

Categorical variables can be subdivided into ordinal or nominal variables - depending on
whether or not the categories can logically be ordered in a meaningful way.

238



Finally, for all types, and subtypes, of variables there are both numerical and graphical methods
we can use for descriptive analysis.

In the exercises that follow you will be introduced to measures of frequency, measures of central
tendency, and measures of dispersion. Then, you’ll learn various methods for estimating and
interpreting these measures using R.

239



19 Numerical Descriptions of Categorical
Variables

We’ll begin our discussion of descriptive statistics in the categorical half of our flow chart.
Specifically, we’ll start by numerically describing categorical variables. As a reminder, cate-
gorical variables are variables whose values fit into categories.

Figure 19.1: Numerical variable descriptive analysis flowchart.

Some examples of categorical variables commonly seen in public health data are: sex, race or
ethnicity, and level of educational attainment.

240



Figure 19.2: Examples of categorical variables.

Notice that there is no inherent numeric value to any of these categories. Having said that,
we can, and often will, assign a numeric value to each category using R.

241



Figure 19.3: Examples of categorical variables with assigned numeric values.

The two most common numerical descriptions of categorical variables are probably the fre-
quency count (you will often hear this referred to as simply the frequency, the count, or the n)
and the proportion or percentage (the percentage is just the proportion multiplied by 100).

242



Figure 19.4: Frequency and count - common numeric descriptions of categorical variables.

The count is simply the number of observations, in this case people, which fall into each
possible category.

The proportion is just the count divided by the total number of observations. In this example,
2 people out of 5 people (.40 or 40%) are in the Asian race category.

The remainder of this chapter is devoted to learning how to calculate frequency counts and
percentages using R.

19.1 Factors

We first learned about factors in the Let’s Get Programming chapter. Before moving on
to calculating frequency counts and percentages, we will discuss factors in slightly greater
depth here. As a reminder, factors can be useful for representing categorical data in R. To
demonstrate, let’s simulate a simple little data frame.

# Load dplyr for tibble()
library(dplyr)

243

../lets_get_programming/lets_get_programming.qmd


demo <- tibble(
id = c("001", "002", "003", "004"),
age = c(30, 67, 52, 56),
edu = c(3, 1, 4, 2)

)

� Here’s what we did above:

• We created a data frame that is meant to simulate some demographic information about
4 hypothetical study participants.

• The first variable (id) is the participant’s study id.

• The second variable (age) is the participant’s age at enrollment in the study.

• The third variable (edu) is the highest level of formal education the participant completed.
Where:

– 1 = Less than high school

– 2 = High school graduate

– 3 = Some college

– 4 = College graduate

Each participant in our data frame has a value for edu – 1, 2, 3, or 4. The value they have for
that variable corresponds to the highest level of formal education they have completed, which
is split up into categories that we defined. We can see which category each person is in by
viewing the data.

demo

# A tibble: 4 x 3
id age edu
<chr> <dbl> <dbl>

1 001 30 3
2 002 67 1
3 003 52 4
4 004 56 2

We can see that person 001 is in category 3, person 002 is in category 1, and so on. This
compact representation of the categories is convenient for data entry and data manipulation,
but it also has an obvious limitation – what do these numbers mean? We defined what these
values mean for you above, but if you didn’t have that information, or some kind of prior

244



knowledge about the process that was used to gather this data, then you would likely have no
idea what these numbers mean.

Now, we could have solved that problem by making education a character vector from the
beginning. For example:

demo <- tibble(
id = c("001", "002", "003", "004"),
age = c(30, 67, 52, 56),
edu = c(3, 1, 4, 2),
edu_char = c(

"Some college", "Less than high school", "College graduate",
"High school graduate"

)
)

demo

# A tibble: 4 x 4
id age edu edu_char
<chr> <dbl> <dbl> <chr>

1 001 30 3 Some college
2 002 67 1 Less than high school
3 003 52 4 College graduate
4 004 56 2 High school graduate

But, this strategy also has a few limitations.

� First, entering data this way requires more typing. Not such a big deal in this case because
we only have 4 participants. But, imagine typing out the categories as character strings 10,
20, or 100 times. �

� Second, R summarizes character vectors alphabetically by default, which may not be the
ideal way to order some categorical variables.

� Third, creating categorical variables in our data frame as character vectors limits us to
inputting only observed values for that variable. However, there are cases when other categories
are possible and just didn’t apply to anyone in our data. That information may be useful to
know.

At this point, we’re going to show you how to coerce a variable to a factor in your data frame.
Then, we will return to showing you how using factors can overcome some of the limitations
outlined above.

245



19.1.1 Coerce a numeric variable

The code below shows one method for coercing a numeric vector into a factor.

# Load dplyr for pipes and mutate()
library(dplyr)

demo <- demo |>
mutate(

edu_f = factor(
x = edu,
levels = 1:4,
labels = c(
"Less than high school", "High school graduate", "Some college",
"College graduate"

)
)

)

demo

# A tibble: 4 x 5
id age edu edu_char edu_f
<chr> <dbl> <dbl> <chr> <fct>

1 001 30 3 Some college Some college
2 002 67 1 Less than high school Less than high school
3 003 52 4 College graduate College graduate
4 004 56 2 High school graduate High school graduate

�Here’s what we did above:

• We used dplyr’s mutate() function to create a new variable (edu_f) in the data frame
called demo. The purpose of the mutate() function is to add new variables to data
frames. We will discuss mutate() in greater detail later in the book.

– You can type ?mutate into your R console to view the help documentation for this
function and follow along with the explanation below.

– We assigned this new data frame the name demo using the assignment operator
(<-).

246

../creating_and_modifying_columns/creating_and_modifying_columns.qmd


– Because we assigned it the name demo, our previous data frame named demo (i.e.,
the one that didn’t include edu_f) no longer exists in our global environment. If
we had wanted to keep that data frame in our global environment, we would have
needed to assign our new data frame a different name (e.g., demo_w_factor).

• The first argument to the mutate() function is the .data argument. The value passed to
the .data argument should be a data frame that is currently in our global environment.
We passed the data frame demo to the .data argument using the pipe operator (|>),
which is why demo isn’t written inside mutate’s parentheses.

• The second argument to the mutate() function is the ... argument. The value passed
to the ... argument should be a name value pair. That means, a variable name, followed
by an equal sign, followed by the values to be assigned to that variable name (name =
value).

– The name we passed to the ... argument was edu_f. This value tells R what to
name the new variable we are creating.

∗ If we had used the name edu instead, then the previous values in the edu
variable would have been replaced with the new values. That is sometimes
what you want to happen. However, when it comes to creating factors, we
typically keep the numeric version of the variable in our data frame (e.g., edu)
and add a new factor variable. We just often find that it can be useful to have
both versions of the variable hanging around during the analysis process.

∗ We also use the _f naming convention in our code. That means that when we
create a new factor variable we name it the same thing the original variable
was named with the addition of _f (for factor) at the end.

– In this case, the value that will be assigned to the name edu_f will be the values
returned by the factor() function. This is an example of nesting functions.

• We used the factor() function to create a factor vector.

– You can type ?factor into your R console to view the help documentation for this
function and follow along with the explanation below.

– The first argument to the factor() function is the x argument. The value passed
to the x argument should be a vector of data. We passed the edu vector to the x
argument.

– The second argument to the factor() function is the levels argument. This
argument tells R the unique values that the new factor variable can take. We used
the shorthand 1:4 to tell R that edu_f can take the unique values 1, 2, 3, or 4.

247



– The third argument to the factor() function is the labels argument. The value
passed to the labels argument should be a character vector of labels (i.e., descrip-
tive text) for each value in the levels argument. The order of the labels in the
character vector we pass to the labels argument should match the order of the
values passed to the levels argument. For example, the ordering of levels and
labels above tells R that 1 should be labeled with “Less than high school”, 2
should be labeled with “High school graduate”, etc.

When we printed the data frame above, the values in edu_f looked the same as the charac-
ter strings displayed in edu_char. Notice, however, that the variable type displayed below
edu_char in the data frame above is <chr> for character. Alternatively, the variable type
displayed below edu_f is <fctr>. Although, labels are used to make factors look like character
vectors, they are still integer vectors under the hood. For example:

as.numeric(demo$edu_char)

Warning: NAs introduced by coercion

[1] NA NA NA NA

as.numeric(demo$edu_f)

[1] 3 1 4 2

There are two main reasons that you may want to use factors instead of character vectors at
times:

� First, R summarizes character vectors alphabetically by default, which may not be the ideal
way to order some categorical variables. However, we can explicitly set the order of factor
levels. This will be useful to us later when we analyze categorical variables. Here is a glimpse
of things to come:

table(demo$edu_char)

College graduate High school graduate Less than high school
1 1 1

Some college
1

248



table(demo$edu_f)

Less than high school High school graduate Some college
1 1 1

College graduate
1

�Here’s what we did above:

• You can type ?base::table into your R console to view the help documentation for this
function and follow along with the explanation below.

• We used the table() function to get a count of the number of times each unique value of
edu_char appears in our data frame. In this case, each value appears one time. Notice
that the results are returned to us in alphabetical order.

• Next, we used the table() function to get a count of the number of times each unique
value of edu_f appears in our data frame. Again, each value appears one time. Notice,
however, that this time the results are returned to us in the order that we passed to the
levels argument of the factor() function above.

� Second, creating categorical variables in our data frame as character vectors limits us to
inputting only observed values for that variable. However, there are cases when other categories
are possible and just didn’t apply to anyone in our data. That information may be useful to
know. Factors allow us to tell R that other values are possible, even when they are unobserved
in our data. For example, let’s add a fifth possible category to our education variable –
graduate school.

demo <- demo |>
mutate(

edu_5cat_f = factor(
x = edu,
levels = 1:5,
labels = c(
"Less than high school", "High school graduate", "Some college",
"College graduate", "Graduate school"

)
)

)

demo

249



# A tibble: 4 x 6
id age edu edu_char edu_f edu_5cat_f
<chr> <dbl> <dbl> <chr> <fct> <fct>

1 001 30 3 Some college Some college Some college
2 002 67 1 Less than high school Less than high school Less than high ~
3 003 52 4 College graduate College graduate College graduate
4 004 56 2 High school graduate High school graduate High school gra~

Now, let’s use the table() function once again to count the number of times each unique
level of edu_char appears in the data frame and the number of times each unique level of
edu_5cat_f appears in the data frame:

table(demo$edu_char)

College graduate High school graduate Less than high school
1 1 1

Some college
1

table(demo$edu_5cat_f)

Less than high school High school graduate Some college
1 1 1

College graduate Graduate school
1 0

Notice that R now tells us that the value Graduate school was possible but was observed
zero times in the data.

19.1.2 Coerce a character variable

It is also possible to coerce character vectors to factors. For example, we can coerce edu_char
to a factor like so:

250



demo <- demo |>
mutate(

edu_f_from_char = factor(
x = edu_char,
levels = c(
"Less than high school", "High school graduate", "Some college",
"College graduate", "Graduate school"

)
)

)

demo

# A tibble: 4 x 7
id age edu edu_char edu_f edu_5cat_f edu_f_from_char
<chr> <dbl> <dbl> <chr> <fct> <fct> <fct>

1 001 30 3 Some college Some colle~ Some coll~ Some college
2 002 67 1 Less than high school Less than ~ Less than~ Less than high~
3 003 52 4 College graduate College gr~ College g~ College gradua~
4 004 56 2 High school graduate High schoo~ High scho~ High school gr~

table(demo$edu_f_from_char)

Less than high school High school graduate Some college
1 1 1

College graduate Graduate school
1 0

�Here’s what we did above:

• We coerced a character vector (edu_char) to a factor using the factor() function.

• Because the levels are character strings, there was no need to pass any values to the
labels argument this time. Keep in mind, though, that the order of the values passed
to the levels argument matters. It will be the order that the factor levels will be
displayed in your analyses.

Now that we know how to use factors, let’s return to our discussion of describing categorical
variables.

251



19.2 Height and Weight Data

Below, we’re going to learn to do descriptive analysis in R by experimenting with some simu-
lated data that contains several people’s sex, height, and weight. You can follow along with
this lesson by copying and pasting the code chunks below in your R session.

# Load the dplyr package. We will need several of dplyr's functions in the
# code below.
library(dplyr)

# Simulate some data
height_and_weight_20 <- tibble(
id = c(

"001", "002", "003", "004", "005", "006", "007", "008", "009", "010", "011",
"012", "013", "014", "015", "016", "017", "018", "019", "020"

),
sex = c(1, 1, 2, 2, 1, 1, 2, 1, 2, 1, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2),
sex_f = factor(sex, 1:2, c("Male", "Female")),
ht_in = c(

71, 69, 64, 65, 73, 69, 68, 73, 71, 66, 71, 69, 66, 68, 75, 69, 66, 65, 65,
65

),
wt_lbs = c(

190, 176, 130, 154, 173, 182, 140, 185, 157, 155, 213, 151, 147, 196, 212,
190, 194, 176, 176, 102

)
)

19.2.1 View the data

Let’s start our analysis by taking a quick look at our data…

height_and_weight_20

# A tibble: 20 x 5
id sex sex_f ht_in wt_lbs
<chr> <dbl> <fct> <dbl> <dbl>

1 001 1 Male 71 190
2 002 1 Male 69 176
3 003 2 Female 64 130
4 004 2 Female 65 154

252



5 005 1 Male 73 173
6 006 1 Male 69 182
7 007 2 Female 68 140
8 008 1 Male 73 185
9 009 2 Female 71 157
10 010 1 Male 66 155
11 011 1 Male 71 213
12 012 2 Female 69 151
13 013 2 Female 66 147
14 014 2 Female 68 196
15 015 1 Male 75 212
16 016 2 Female 69 190
17 017 2 Female 66 194
18 018 2 Female 65 176
19 019 2 Female 65 176
20 020 2 Female 65 102

�Here’s what we did above:

• Simulated some data that we can use to practice categorical data analysis.

• We viewed the data and found that it has 5 variables (columns) and 20 observations
(rows).

• Also notice that you can use the “Next” button at the bottom right corner of the printed
data frame to view rows 11 through 20 if you are viewing this data in RStudio.

Figure 19.5: The “Next” button in RStudio.

253



19.3 Calculating frequencies

Now that we’re able to easily view our data, let’s return to the original purpose of this demon-
stration – calculating frequencies and proportions. At this point, we suspect that few of you
would have any trouble saying that the frequency of females in this data is 12 and the fre-
quency of males in this data is 8. It’s pretty easy to just count the number of females and
males in this small data set with only 20 rows. Further, if we asked you what proportion of
this sample is female, most of you would still be able to easily say 12/20 = 0.6, or 60%. But,
what if we had 100 observations or 1,000,000 observations? You’d get sick of counting pretty
quickly. Fortunately, you don’t have to! Let R do it for you! As is almost always the case
with R, there are multiple ways we can calculate the statistics that we’re interested in.

19.3.1 The base R table function

As we already saw above, we can use the base R table() function like this:

table(height_and_weight_20$sex)

1 2
8 12

Additionally, we can use the CrossTable() function from the gmodels package, which gives
us a little more information by default.

19.3.2 The gmodels CrossTable function

# Like all packages, you will have to install gmodels (install.packages("gmodels")) before you can use the CrossTable() function.
gmodels::CrossTable(height_and_weight_20$sex)

Cell Contents
|-------------------------|
| N |
| N / Table Total |
|-------------------------|

254



Total Observations in Table: 20

| 1 | 2 |
|-----------|-----------|
| 8 | 12 |
| 0.400 | 0.600 |
|-----------|-----------|

19.3.3 The tidyverse way

The final way we’re going to discuss here is the tidyverse way, which is our preference. We will
have to write a little additional code, but the end result will be more flexible, more readable,
and will return our statistics to us in a data frame that we can save and use for further analysis.
Let’s walk through this step by step…

Note

You should already be familiar with the pipe operator (|>), but if it doesn’t look familiar
to you, you can learn more about it in Using pipes. Don’t forget, if you are using RStudio,
you can use the keyboard shortcut shift + command + m (Mac) or shift + control +
m (Windows) to insert the pipe operator.

First, we don’t want to view the individual values in our data frame. Instead, we want to
condense those values into summary statistics. This is a job for the summarise() function.

height_and_weight_20 |>
summarise()

# A tibble: 1 x 0

As you can see, summarise() doesn’t do anything interesting on its own. We need to tell it
what kind of summary information we want. We can use the n() function to count rows. By
default, it will count all the rows in the data frame. For example:

255

../using_pipes/using_pipes.qmd
https://dplyr.tidyverse.org/reference/summarise.html
https://dplyr.tidyverse.org/reference/n.html


height_and_weight_20 |>
summarise(n())

# A tibble: 1 x 1
`n()`
<int>

1 20

�Here’s what we did above:

• We passed our entire data frame to the summarise() function and asked it to count the
number of rows in the data frame.

• The result we get is a new data frame with 1 column (named n()) and one row with the
value 20 (the number of rows in the original data frame).

This is a great start. However, we really want to count the number of rows that have the
value “Female” for sex_f, and then separately count the number of rows that have the value
“Male” for sex_f. Said another way, we want to break our data frame up into smaller data
frames – one for each value of sex_f – and then count the rows. This is exactly what dplyr’s
group_by() function does.

height_and_weight_20 |>
group_by(sex_f) |>
summarise(n())

# A tibble: 2 x 2
sex_f `n()`
<fct> <int>

1 Male 8
2 Female 12

And, that’s what we want.

Note

dplyr’s group_by() function operationalizes the Split - Apply - Combine strategy for
data analysis. That sounds sort of fancy, but all it really means is that we split our data
frame up into smaller data frames, apply our calculation separately to each smaller data
frame, and then combine those individual results back together as a single result. So, in
the example above, the height_and_weight_20 data frame was split into two separate
little data frames (i.e., one for females and one for males), then the summarise() and

256

https://dplyr.tidyverse.org/reference/group_by.html


n() functions counted the number of rows in each of the two smaller data frames (i.e.,
12 and 8 respectively), and finally combined those individual results into a single data
frame, which was printed to the screen for us to view.

However, it will be awkward to work with a variable named n() (i.e., with parentheses) in
the future. Let’s go ahead and assign it a different name. We can assign it any valid name
we want. Some names that might make sense are n, frequency, or count. We’re going to go
ahead and just name it n without the parentheses.

height_and_weight_20 |>
group_by(sex_f) |>
summarise(n = n())

# A tibble: 2 x 2
sex_f n
<fct> <int>

1 Male 8
2 Female 12

�Here’s what we did above:

• We added n = to our summarise function (summarise(n = n())) so that our count
column in the resulting data frame would be named n instead of n().

Finally, estimating categorical frequencies like this is such a common operation that dplyr
has a shortcut for it – count(). We can use the count() function to get the same result that
we got above.

height_and_weight_20 |>
count(sex_f)

# A tibble: 2 x 2
sex_f n
<fct> <int>

1 Male 8
2 Female 12

257

https://dplyr.tidyverse.org/reference/tally.html


19.4 Calculating percentages

In addition to frequencies, we will often be interested in calculating percentages for categorical
variables. As always, there are many ways to accomplish this task in R. From here on out,
we’re going to primarily use tidyverse functions.

In this case, the proportion of people in our data who are female can be calculated as the
number who are female (12) divided by the total number of people in the data (20). Because
we already know that there are 20 people in the data, we could calculate proportions like
this:

height_and_weight_20 |>
count(sex_f) |>
mutate(prop = n / 20)

# A tibble: 2 x 3
sex_f n prop
<fct> <int> <dbl>

1 Male 8 0.4
2 Female 12 0.6

�Here’s what we did above:

• Because the count() function returns a data frame just like any other data frame, we
can manipulate it in the same ways we can manipulate any other data frame.

• So, we used dplyr’s mutate() function to create a new variable in the data frame named
prop. Again, we could have given it any valid name.

• Then we set the value of prop to be equal to the value of n divided by 20.

This works, but it would be better to have R calculate the total number of observations for
the denominator (20) than for us to manually type it in. In this case, we can do that with the
sum() function.

height_and_weight_20 |>
count(sex_f) |>
mutate(prop = n / sum(n))

# A tibble: 2 x 3
sex_f n prop
<fct> <int> <dbl>

1 Male 8 0.4
2 Female 12 0.6

258



�Here’s what we did above:

• Instead of manually typing in the total count for our denominator (20), we had R calcu-
late it for us using the sum() function. The sum() function added together all the values
of the variable n (i.e., 12 + 8 = 20).

Finally, we just need to multiply our proportion by 100 to convert it to a percentage.

height_and_weight_20 |>
count(sex_f) |>
mutate(percent = n / sum(n) * 100)

# A tibble: 2 x 3
sex_f n percent
<fct> <int> <dbl>

1 Male 8 40
2 Female 12 60

�Here’s what we did above:

• Changed the name of the variable we are creating from prop to percent. But, we could
have given it any valid name.

• Multiplied the proportion by 100 to convert it to a percentage.

19.5 Missing data

In the real world, you will frequently encounter data that has missing values. Let’s quickly
take a look at an example by adding some missing values to our data frame.

height_and_weight_20 <- height_and_weight_20 |>
mutate(sex_f = replace(sex, c(2, 9), NA)) |>
print()

# A tibble: 20 x 5
id sex sex_f ht_in wt_lbs
<chr> <dbl> <dbl> <dbl> <dbl>

1 001 1 1 71 190
2 002 1 NA 69 176
3 003 2 2 64 130
4 004 2 2 65 154

259



5 005 1 1 73 173
6 006 1 1 69 182
7 007 2 2 68 140
8 008 1 1 73 185
9 009 2 NA 71 157
10 010 1 1 66 155
11 011 1 1 71 213
12 012 2 2 69 151
13 013 2 2 66 147
14 014 2 2 68 196
15 015 1 1 75 212
16 016 2 2 69 190
17 017 2 2 66 194
18 018 2 2 65 176
19 019 2 2 65 176
20 020 2 2 65 102

�Here’s what we did above:

• Replaced the 2nd and 9th value of sex_f with NA (missing) using the replace() function.

Now let’s see how our code from above handles this

height_and_weight_20 |>
count(sex_f) |>
mutate(percent = n / sum(n) * 100)

# A tibble: 3 x 3
sex_f n percent
<dbl> <int> <dbl>

1 1 7 35
2 2 11 55
3 NA 2 10

As you can see, we are now treating missing as if it were a category of sex_f. Sometimes this
will be the result you want. However, often you will want the n and percent of non-missing
values for your categorical variable. This is sometimes referred to as a complete case analysis.
There’s a couple of different ways we can handle this. We will simply filter out rows with a
missing value for sex_f with dplyr’s filter() function.

260

https://dplyr.tidyverse.org/reference/filter.html


height_and_weight_20 |>
filter(!is.na(sex_f)) |>
count(sex_f) |>
mutate(percent = n / sum(n) * 100)

# A tibble: 2 x 3
sex_f n percent
<dbl> <int> <dbl>

1 1 7 38.9
2 2 11 61.1

�Here’s what we did above:

• We used filter() to keep only the rows that have a non-missing value for sex_f.

– In the R language, we use the is.na() function to tell the R interpreter to identify
NA (missing) values in a vector. We cannot use something like sex_f == NA to
identify NA values, which is sometimes confusing for people who are coming to R
from other statistical languages.

– In the R language, ! is the NOT operator. It sort of means “do the opposite.”

– So, filter() tells R which rows of a data frame to keep, and is.na(sex_f)
tells R to find rows with an NA value for the variable sex_f. Together,
filter(is.na(sex_f)) would tell R to keep rows with an NA value for the
variable sex_f. Adding the NOT operator ! tells R to do the opposite – keep rows
that do NOT have an NA value for the variable sex_f.

• We used our code from above to calculate the n and percent of non-missing values of
sex_f.

19.6 Formatting results

Notice that now our percentages are being displayed with 5 digits to the right of the decimal.
If we wanted to present our findings somewhere (e.g., a journal article or a report for our
employer) we would almost never want to display this many digits. Let’s get R to round these
numbers for us.

height_and_weight_20 |>
filter(!is.na(sex_f)) |>
count(sex_f) |>
mutate(percent = (n / sum(n) * 100) |> round(2))

261



# A tibble: 2 x 3
sex_f n percent
<dbl> <int> <dbl>

1 1 7 38.9
2 2 11 61.1

�Here’s what we did above:

• We passed the calculated percentage values (n / sum(n) * 100) to the round() func-
tion to round our percentages to 2 decimal places.

– Notice that we had to wrap n / sum(n) * 100 in parentheses in order to pass it
to the round() function with a pipe.

– We could have alternatively written our R code this way: mutate(percent =
round(n / sum(n) * 100, 2)).

19.7 Using freqtables

In the sections above, we learned how to use dplyr functions to calculate the frequency and
percentage of observations that take on each value of a categorical variable. However, there
can be a fair amount of code writing involved when using those methods. The more we have
to repeatedly type code, the more tedious and error-prone it becomes. This is an idea we will
return to many times in this book. Luckily, the R programming language allows us to write
our own functions, which solves both of those problems.

Later in this book, we will show you how to write your own functions. For the time being,
We’re going to suggest that you install and use a package we created called freqtables. The
freqtables package is basically an enhanced version of the code we wrote in the sections
above. We designed it to help us quickly make tables of descriptive statistics (i.e., counts,
percentages, confidence intervals) for categorical variables, and it’s specifically designed to
work in a dplyr pipeline.

Like all packages, you need to first install it…

# You may be asked if you want to update other packages on your computer that
# freqtables uses. Go ahead and do so.
install.packages("freqtables")

And then load it…

262

../writing_functions/writing_functions.qmd
https://github.com/brad-cannell/freqtables


# After installing freqtables on your computer, you can load it just like you
# would any other package.
library(freqtables)

Now, let’s use the freq_table() function from freqtables package to rerun our analysis
from above.

height_and_weight_20 |>
filter(!is.na(sex_f)) |>
freq_table(sex_f)

# A tibble: 2 x 9
var cat n n_total percent se t_crit lcl ucl
<chr> <chr> <int> <int> <dbl> <dbl> <dbl> <dbl> <dbl>

1 sex_f 1 7 18 38.9 11.8 2.11 18.2 64.5
2 sex_f 2 11 18 61.1 11.8 2.11 35.5 81.8

�Here’s what we did above:

• We used filter() to keep only the rows that have a non-missing value for sex and
passed the data frame on to the freq_table() function using a pipe.

• We told the freq_table() function to create a univariate frequency table for the variable
sex_f. A “univariate frequency table” just means a table (data frame) of useful statistics
about a single categorical variable.

• The univariate frequency table above includes:

– var: The name of the categorical variable (column) we are analyzing.

– cat: Each of the different categories the variable var contains – in this case “Male”
and “Female”.

– n: The number of rows where var equals the value in cat. In this case, there are
7 rows where the value of sex_f is Male, and 11 rows where the value of sex_f is
Female.

– n_total: The sum of all the n values. This is also to total number of rows in the
data frame currently being analyzed.

– percent: The percent of rows where var equals the value in cat.

– se: The standard error of the percent. This value is not terribly useful on its own;
however, it’s necessary for calculating the 95% confidence intervals.

263



– t_crit: The critical value from the t distribution. This value is not terribly useful
on its own; however, it’s necessary for calculating the 95% confidence intervals.

– lcl: The lower (95%, by default) confidence limit for the percentage percent.

– ucl: The upper (95%, by default) confidence limit for the percentage percent.

We will continue using the freqtables package at various points throughout the book. We
will also show you some other cool things we can do with freqtables. For now, all you need
to know how to do is use the freq_table() function to calculate frequencies and percentages
for single categorical variables.

� Congratulations! You now know how to use R to do some basic descriptive analysis of
individual categorical variables.

264



20 Measures of Central Tendency

In previous sections you’ve seen methods for describing individual categorical variables. Now
we’ll switch over to numerically describing numerical variables.

Figure 20.1: Numerical variable descriptive analysis flowchart.

In epidemiology, we often want to describe the “typical” person in a population with respect
to some characteristic that is recorded as a numerical variable – like height or weight. The
most basic, and probably most commonly used, way to do so is with a measure of central
tendency.

In this chapter we’ll discuss three measures of central tendency:

• The mean

• The median

265



• The mode

Figure 20.2: Measures of central tendency chart.

Now, this is not a statistics course. But we will briefly discuss these measures and some of
their characteristics below to make sure that we’re all on the same page when we discuss the
interpretation of our results.

The mean

266



Figure 20.3: Mean chart.

When we talk about the typical, or “average”, value of some variable measured on a contin-
uous scale, we are usually talking about the mean value of that variable. To be even more
specific, we are usually talking about the arithmetic mean value. This value has some favorable
characteristics that make it a good description of central tendency.

� For starters it’s simple. Most people are familiar with the mean, and at the very least, have
some intuitive sense of what it means (no pun intended).

� In addition, there can be only one mean value for any set of values.

However, there are a couple of potentially problematic characteristics of the mean as well:

� It’s susceptible to extreme values in your data. In other words, a couple of people with very
atypical values for the characteristic you are interested in can drastically alter the value of the
mean, and your estimate for the typical person in your population of interest along with it.

� Additionally, it’s very possible to calculate a mean value that is not actually observed any-
where in your data.

267



Note

The sample mean is often referred to as ̄𝑥, which pronounced “x bar.”

The median

Figure 20.4: Mean and median chart

The median is probably the second most commonly used measure of central tendency. Like
the mean, it’s computationally simple and relatively straightforward to understand. � There
can be one, and only one, median. � And, its value may also be unobserved in the data.�

However, unlike the mean, it’s relatively resistant to extreme values. � In fact, when the
median is used as the measure of central tendency, it’s often because the person conducting
the analysis suspects that extreme values in the data are likely to distort the mean.

The mode

268



Figure 20.5: Mean, median and mode chart

And finally, we have the mode, or the value that is most often observed in the data. It doesn’t
get much simpler than that. � But, unlike the mean and the median, there can be more than
one mode for a given set of values. In fact, there can even be no mode if all the values are
observed the exact same number of times.�

However, if there is a mode, by definition it’s observed in the data.�

Now that we are all on the same page with respect to the fundamentals of central tendency,
let’s take a look at how to calculate these measures using R.

20.1 Calculate the mean

Calculating the mean is really straightforward. We can just use base R’s built-in mean()
function.

# Load the dplyr package. We will need several of dplyr's functions in the
# code below.
library(dplyr)

269



# Simulate some data
height_and_weight_20 <- tribble(
~id, ~sex, ~ht_in, ~wt_lbs,
"001", "Male", 71, 190,
"002", "Male", 69, 177,
"003", "Female", 64, 130,
"004", "Female", 65, 153,
"005", NA, 73, 173,
"006", "Male", 69, 182,
"007", "Female", 68, 186,
"008", NA, 73, 185,
"009", "Female", 71, 157,
"010", "Male", 66, 155,
"011", "Male", 71, 213,
"012", "Female", 69, 151,
"013", "Female", 66, 147,
"014", "Female", 68, 196,
"015", "Male", 75, 212,
"016", "Female", 69, 19000,
"017", "Female", 66, 194,
"018", "Female", 65, 176,
"019", "Female", 65, 176,
"020", "Female", 65, 102

)

� Here’s what we did above:

• We loaded the tibble package so that we could use its tribble() function.

• We used the tribble() function to simulate some data – heights and weights for 20
hypothetical students.

– The tribble() function creates something called a tibble. A tibble is the
tidyverse version of a data frame. In fact, it is a data frame, but with some
additional functionality. You can use the link to read more about it if you’d like.

– We used the tribble() function instead of the data.frame() function to create
our data frame above because we can use the tribble() function to create our data
frames in rows (like you see above) instead of columns with the c() function.

– Using the tribble() function to create a data frame isn’t any better or worse than
using the data.frame() function. You should just be aware that it exists and is
sometimes useful.

270

https://tibble.tidyverse.org/


mean(height_and_weight_20$ht_in)

[1] 68.4

� Here’s what we did above:

• We used base R’s mean() function to calculate the mean of the column “ht_in” from the
data frame “height_and_weight_20”.

– Note: if you just type mean(ht_in) you will get an error. That’s because R will
look for an object called “ht_in” in the global environment.

– However, we didn’t create an object called “ht_in”. We created an object (in this
case a data frame) called “height_and_weight_20”. That object has a column in
it called “ht_in”.

– So, we must specifically tell R to look for the “ht_in” column in the data frame
“height_and_weight_20”. Using base R, we can do that in one of two ways:
height_and_weight_20$ht_in or height_and_weight_20[["ht_in"]].

20.2 Calculate the median

Similar to above, we can use base R’s median() function to calculate the median.

median(height_and_weight_20$ht_in)

[1] 68.5

� Here’s what we did above:

• We used base R’s median() function to calculate the median of the column “ht_in” from
the data frame “height_and_weight_20”.

20.3 Calculate the mode

Base R does not have a built-in mode() function. Well, it actually does have a mode() function,
but for some reason that function does not return the mode value(s) of a set of numbers.
Instead, the mode() function gets or sets the type or storage mode of an object. For example:

271



mode(height_and_weight_20$ht_in)

[1] "numeric"

This is clearly not what we are looking for. So, how do we find the mode value(s)? Well, we
are going to have to build our own mode function. Later in the book, we will return to this
function and walk through how to build it one step at a time. For now, just copy and paste
the code into R on your computer. Keep in mind, as is almost always the case with R, this
way of writing this function is only one of multiple possible ways.

mode_val <- function(x) {

# Count the number of occurrences for each value of x
value_counts <- table(x)

# Get the maximum number of times any value is observed
max_count <- max(value_counts)

# Create and index vector that identifies the positions that correspond to
# count values that are the same as the maximum count value: TRUE if so
# and false otherwise
index <- value_counts == max_count

# Use the index vector to get all values that are observed the same number
# of times as the maximum number of times that any value is observed
unique_values <- names(value_counts)
result <- unique_values[index]

# If result is the same length as value counts that means that every value
# occured the same number of times. If every value occurred the same number
# of times, then there is no mode
no_mode <- length(value_counts) == length(result)

# If there is no mode then change the value of result to NA
if (no_mode) {

result <- NA
}

# Return result
result

}

272



mode_val(height_and_weight_20$ht_in)

[1] "65" "69"

� Here’s what we did above:

• We created our own function, mode_val(), that takes a vector (or data frame column)
as a value to its “x” argument and returns the mode value(s) of that vector.

• We can also see that the function works as expected when there is more than one mode
value. In this case, “65” and “69” each occur 4 times in the column “ht_in”.

20.4 Compare mean, median, and mode

Now that you know how to calculate the mean, median, and mode, let’s compare these three
measures of central tendency. This is a good opportunity to demonstrate some of the different
characteristics of each that we spoke about earlier.

height_and_weight_20 %>%
summarise(

min_weight = min(wt_lbs),
mean_weight = mean(wt_lbs),
median_weight = median(wt_lbs),
mode_weight = mode_val(wt_lbs) %>% as.double(),
max_weight = max(wt_lbs)

)

# A tibble: 1 x 5
min_weight mean_weight median_weight mode_weight max_weight

<dbl> <dbl> <dbl> <dbl> <dbl>
1 102 1113. 176. 176 19000

� Here’s what we did above:

• We used the mean() function, median() function, and our mode_val() function inside of
dplyr’s summarise() function to find the mean, median, and mode values of the column
“wt_lbs” in the “height_and_weight_20” data frame.

• We also used the as.double() function to convert the value returned by mode_val() –
“176” – from a character string to a numeric double. This isn’t strictly necessary, but
does look better.

273



• Finally, we used base R’s min() and max() functions to view the lowest and highest
weights in our sample.

20.5 Data checking

Do you see any red flags �as you scan the results? Do you really think a mean weight of 1,113
pounds sounds reasonable? This should definitely be a red flag for you. Now move your gaze
three columns to the right and notice that the maximum value of weight is 19,000 lbs – an
impossible value for a study in human populations. In this case the real weight was supposed
to be 190 pounds, but the person entering the data accidentally got a little trigger-happy with
the zero key.

This is an example of what was meant by “We can use descriptive analysis to uncover errors in
our data” in the Introduction to descriptive analysis chapter. Often times, for various reasons,
some observations for a given variable take on values that don’t make sense. Starting by
calculating some basic descriptive statistics for each variable is one approach you can use to
try to figure out if you have values in your data that don’t make sense.

In this case we can just go back and fix our data, but what if we didn’t know this value was
an error? What if it were a value that was technically possible, but very unlikely? Well, we
can’t just go changing values in our data. It’s unethical, and in some cases illegal. Below, we
discuss the how the properties of the median and mode can come in handy in situations such
as this.

20.6 Properties of mean, median, and mode

Despite the fact that this impossibly extreme value is in our data, the median and mode
estimates are reasonable estimates of the typical person’s weight in this sample. This is what
we mean when we say that the median and mode are more “resistant to extreme values” than
the mean.

You may also notice that no person in our sample had an actual weight of 1,112.75 (the mean)
or even 176.5 (the median). This is what we we mean when we say that the mean and median
values are “not necessarily observed in the data.”

In this case, the mode value (176) is also a more reasonable estimate of the average person’s
weight than the mean. And unlike the mean and the median, participants 18 and 19 actually
weigh 176 pounds. This is not to say that the mode is always the best measure of central
tendency to use. However, you can often learn useful information from your data by calculating
and comparing these relatively simple descriptive statistics on each of your numeric variables.

274

../intro_descriptive_analysis/intro_descriptive_analysis.qmd


20.7 Missing data

In numerical descriptions of categorical variables we saw that we could use the dplyr::filter()
function to remove all the rows from our data frame that contained a missing value for any of
our variables of interest. We learned that this is called a complete case analysis. This method
should pretty much always work, but in this section, you will see an alternative method for
dropping missing values from your analysis that you are likely to come across often when
reading R documentation – the na.rm argument.

Many R functions that perform calculations on numerical variables include an na.rm – short
for “Remove NA” – argument. By default, this argument is typically set to FALSE. By passing
the value TRUE to this argument, we can perform a complete case analysis. Let’s quickly take
a look at how it works.

We already saw that we can calculate the mean value of a numeric vector using the mean()
function:

mean(c(1, 2, 3))

[1] 2

But, what happens when our vector has a missing value?

mean(c(1, NA, 3))

[1] NA

As you can see, the mean() function returns NA by default when we pass it a numeric vector
that contains a missing value. It can be confusing to understand why this is the case. The
logic goes something like this. In R, an NA doesn’t represent the absence of a value – a value
that doesn’t exist at all; rather, it represents a value that does exist, but is unknown to us. So,
if you were asked to give the mean of a set of numbers that contains 1, some unknown number,
and 3 what would your answer be? Well, you can’t just give the mean of 1 and 2. That would
imply that the unknown number doesn’t exist. Further, you can’t really give any numeric
answer because that answer will depend on the value of the missing number. So, the only
logical answer to give is something like “I don’t know” or “it depends.” � That is essentially
what R is telling us when it returns an NA.

While this answer is technically correct, it usually isn’t very satisfying to us. Instead, we often
want R to calculate the mean of the numbers that remain after all missing values are removed
from the original set. The implicit assumption is that the mean of that reduced set of numbers
will be “close enough” to the mean of the original set of numbers for our purposes. We can

275

../categorical_variables/categorical_variables.qmd


ask R to do this by changing the value of the na.rm argument from FALSE – the default – to
TRUE.

mean(c(1, NA, 3), na.rm = TRUE)

[1] 2

In this case, the mean of the original set of numbers (2) and the mean of our complete case
analysis (2) are identical. That won’t always be the case.

Finally, let’s compare using filter() and na.rm = TRUE in a dplyr pipeline. We will first use
the replace() function to add some missing values to our height_and_weight_20 data.

height_and_weight_20 <- height_and_weight_20 %>%
mutate(ht_in = replace(ht_in, c(1, 2), NA)) %>%
print()

# A tibble: 20 x 4
id sex ht_in wt_lbs
<chr> <chr> <dbl> <dbl>

1 001 Male NA 190
2 002 Male NA 177
3 003 Female 64 130
4 004 Female 65 153
5 005 <NA> 73 173
6 006 Male 69 182
7 007 Female 68 186
8 008 <NA> 73 185
9 009 Female 71 157
10 010 Male 66 155
11 011 Male 71 213
12 012 Female 69 151
13 013 Female 66 147
14 014 Female 68 196
15 015 Male 75 212
16 016 Female 69 19000
17 017 Female 66 194
18 018 Female 65 176
19 019 Female 65 176
20 020 Female 65 102

�Here’s what we did above:

276



• Replaced the 1st and 2nd value of ht_in with NA (missing) using the replace() function.

Here’s what our results look like when we don’t perform a complete case analysis.

height_and_weight_20 %>%
summarise(

min_height = min(ht_in),
mean_height = mean(ht_in),
median_height = median(ht_in),
mode_height = mode_val(ht_in),
max_height = max(ht_in)

)

# A tibble: 1 x 5
min_height mean_height median_height mode_height max_height

<dbl> <dbl> <dbl> <chr> <dbl>
1 NA NA NA 65 NA

Here’s what our results look like when we use the filter() function.

height_and_weight_20 %>%
filter(!is.na(ht_in)) %>%
summarise(

min_height = min(ht_in),
mean_height = mean(ht_in),
median_height = median(ht_in),
mode_height = mode_val(ht_in),
max_height = max(ht_in)

)

# A tibble: 1 x 5
min_height mean_height median_height mode_height max_height

<dbl> <dbl> <dbl> <chr> <dbl>
1 64 68.2 68 65 75

And, here’s what our results look like when we change the na.rm argument to TRUE.

height_and_weight_20 %>%
summarise(

min_height = min(ht_in, na.rm = TRUE),
mean_height = mean(ht_in, na.rm = TRUE),

277



median_height = median(ht_in, na.rm = TRUE),
mode_height = mode_val(ht_in),
max_height = max(ht_in, na.rm = TRUE)

)

# A tibble: 1 x 5
min_height mean_height median_height mode_height max_height

<dbl> <dbl> <dbl> <chr> <dbl>
1 64 68.2 68 65 75

As you can see, both methods give us the same result. The method you choose to use will
typically just come down to personal preference.

20.8 Using meantables

In the sections above, we learned how to use dplyr functions to calculate various measures of
central tendency for continuous variables. However, there can be a fair amount of code writing
involved when using those methods. The more we have to repeatedly type code, the more
tedious and error-prone it becomes. This is an idea we will return to many times in this book.
Luckily, the R programming language allows us to write our own functions, which solves both
of those problems.

Later in this book, you will be shown how to write your own functions. For the time being, we
suggest that you install and use the meantables package. The meantables package is basically
an enhanced version of the code we wrote in the sections above. We designed it to help
us quickly make tables of descriptive statistics for continuous variables, and it’s specifically
designed to work in a dplyr pipeline.

Like all packages, you need to first install it…

# You may be asked if you want to update other packages on your computer that
# meantables uses. Go ahead and do so.
install.packages("meantables")

And then load it…

# After installing meantables on your computer, you can load it just like you
# would any other package.
library(meantables)

278

../writing_functions/writing_functions.qmd
https://github.com/brad-cannell/meantables


Now, let’s use the mean_table() function from meantables package to rerun our analysis
from above.

height_and_weight_20 %>%
filter(!is.na(ht_in)) %>%
mean_table(ht_in)

# A tibble: 1 x 9
response_var n mean sd sem lcl ucl min max
<chr> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 ht_in 18 68.2 3.28 0.774 66.6 69.8 64 75

�Here’s what we did above:

• We used filter() to keep only the rows that have a non-missing value for ht_in and
passed the data frame on to the mean_table() function using a pipe.

• We told the mean_table() function to create a table of summary statistics for the vari-
able ht_in. This is just an R data frame of useful statistics about a single continuous
variable.

• The summary statistics in the table above include:

– response_var: The name of the variable (column) we are analyzing.

– n: The number of non-missing values of response_var being analyzed in the current
analysis.

– mean: The mean of all n values of response_var.

– sem: The standard error of the mean of all n values of response_var.

– lcl: The lower (95%, by default) confidence limit for the percentage mean.

– ucl: The upper (95%, by default) confidence limit for the percentage mean.

– min: The minimum value of response_var.

– max: The maximum value of response_var.

We will continue using the meantables package at various points throughout the book. You
will also be shown some other cool things we can do with meantables. For now, all you need
to know how to do is use the mean_table() function to calculate basic descriptive statistics
for single continuous variables.

279



21 Measures of Dispersion

In the chapter on measures of central tendency, we found the minimum value, mean value,
median value, mode value, and maximum value of the weight variable in our hypothetical
sample of students. We’ll go ahead and start this lesson by rerunning that analysis below, but
this time we will analyze heights instead of weights.

# Load the dplyr package. We will need several of dplyr's functions in the
# code below.
library(dplyr)

# Simulate some data
height_and_weight_20 <- tribble(
~id, ~sex, ~ht_in, ~wt_lbs,
"001", "Male", 71, 190,
"002", "Male", 69, 177,
"003", "Female", 64, 130,
"004", "Female", 65, 153,
"005", NA, 73, 173,
"006", "Male", 69, 182,
"007", "Female", 68, 186,
"008", NA, 73, 185,
"009", "Female", 71, 157,
"010", "Male", 66, 155,
"011", "Male", 71, 213,
"012", "Female", 69, 151,
"013", "Female", 66, 147,
"014", "Female", 68, 196,
"015", "Male", 75, 212,
"016", "Female", 69, 19000,
"017", "Female", 66, 194,
"018", "Female", 65, 176,
"019", "Female", 65, 176,
"020", "Female", 65, 102

)

280

../central_tendency/central_tendency.qmd


# Recreate our mode function
mode_val <- function(x) {
value_counts <- table(x)
result <- names(value_counts)[value_counts == max(value_counts)]
if (length(value_counts) == length(result)) {

result <- NA
}
result

}

height_and_weight_20 %>%
summarise(

min_height = min(ht_in),
mean_height = mean(ht_in),
median_height = median(ht_in),
mode_height = mode_val(ht_in) %>% paste(collapse = " , "),
max_height = max(ht_in)

)

# A tibble: 1 x 5
min_height mean_height median_height mode_height max_height

<dbl> <dbl> <dbl> <chr> <dbl>
1 64 68.4 68.5 65 , 69 75

Note

To get both mode height values to display in the output above we used the paste()
function with the collapse argument set to ” , ” (notice the spaces). This forces R to
display our mode values as a character string. The downside is that the “mode_height”
variable no longer has any numeric value to R – it’s simply a character string. However,
this isn’t a problem for us. We won’t be using the mode in this lesson – and it is rarely
used in practice.

Keep in mind that our interest is in describing the “typical” or “average” person in our sample.
The result of our analysis above tells us that the average person who answered the height
question in our hypothetical class was: 68.4 inches. This information gets us reasonably close
to understanding the typical height of the students in our hypothetical class. But remember,
our average person does not necessarily have the same height as any actual person in our
class. So a natural extension of our original question is: “how much like the average person,
are the other people in class.”

For example, is everyone in class 68.4 inches?

281



Figure 21.1: Example with people with the same height

Or are there differences in everyone’s height, with the average person’s height always having
a value in the middle of everyone else’s?

282



Figure 21.2: Example with people of different heights

The measures used to answer this question are called measures of dispersion, which we can
say is the amount of difference between people in the class, or more generally, the amount of
variability in the data.

Three common measures of dispersion used are the:

• Range

• Variance

• Standard Deviation

283



Figure 21.3: Measures of dispersion chart

Range

The range is simply the difference between the maximum and minimum value in the data.

height_and_weight_20 %>%
summarise(

min_height = min(ht_in),
mean_height = mean(ht_in),
max_height = max(ht_in),
range = max_height - min_height

)

# A tibble: 1 x 4
min_height mean_height max_height range

<dbl> <dbl> <dbl> <dbl>
1 64 68.4 75 11

284



In this case, the range is 11. The range can be useful because it tells us how much difference
there is between the tallest person in our class and the shortest person in our class – 11 inches.
However, it doesn’t tell us how close to 68.4 inches “most” people in the class are.

In other words, are most people in the class out at the edges of the range of values in the
data?

Figure 21.4: Example with people’s heights on the edges of the range

Or are people “evenly distributed” across the range of heights for the class?

285



Figure 21.5: Example with people’s heights evenly distributed across the range

Or something else entirely?

Variance

The variance is a measure of dispersion that is slightly more complicated to calculate, although
not much, but gives us a number we can use to quantify the dispersion of heights around the
mean. To do this, let’s work through a simple example that only includes six observations: 3
people who are 58 inches tall and 3 people who are 78 inches tall. In this sample of six people
from our population the average height is 68 inches.

286



Figure 21.6: Example with people’s heights on the edges of the range

Next, let’s draw an imaginary line straight up from the mean.

287



Figure 21.7: Drawing an maginary line at the mean height

Then, let’s measure the difference, or distance, between each person’s height and the mean
height.

288



Figure 21.8: Calculating the differences between individual heights and the mean height

Then we square the differences.

289



Figure 21.9: Squaring the differences between individual heights and the mean height

Then we add up all the squared differences.

290



Figure 21.10: Adding the squared differences between individual heights and the mean height

And finally, we divide by n, the number of non-missing observations, minus 1. In this case n
equals six, so n-1 equals five.

291



Figure 21.11: Dividing the sum of the squared differences between individual heights and the
mean height by n

Note

The sample variance is often written as 𝑠2.

Note

If the 6 observations here represented our entire population of interest, then we could
simply divide by n instead of n-1.

Getting R to do this math for us is really straightforward. We simply use base R’s var()
function.

var(c(rep(58, 3), rep(78, 3)))

[1] 120

292



� Here’s what we did above:

• We created a numeric vector of heights using the c() function.

• Instead of typing c(58, 58, 58, 78, 78, 78) we used the rep() function. rep(58,
3) is equivalent to typing c(58, 58, 58) and rep(78, 3) is equivalent to typing c(78,
78, 78).

• We passed this numeric vector to the var() function and R returned the variance – 120

So, 600 divided by 5 equals 120. Therefore, the sample variance in this case is 120. How-
ever, because the variance is expressed in squared units, instead of the original units, it isn’t
necessarily intuitive to interpret.

Standard deviation

If we take the square root of the variance, we get the standard deviation.

Figure 21.12: Obtaining the standard deviation by taking the square root of the variance

293



Note

The sample standard deviation is often written as 𝑠.

The standard deviation is 10.95 inches, which is much easier to interpret, and compare with
other samples. Now that we know the sample standard deviation, we can use it to describe
a value’s distance from the mean. Additionally, when our data is approximately normally
distributed, then the percentage of values within each standard deviation from the mean
follow the rules displayed in this table:

Figure 21.13: 68–95–99.7 rule for approximately normal data

That is, about 68% of all the observations fall within one standard deviation of the mean (that
is, 10.95 inches). About 95% of all observations are within 2 standard deviations of the mean
(that is, 10.95 * 2 = 21.9 inches), and about 99.9% of all observations are within 3 standard
deviations of the mean (that is, 10.95 * 3 = 32.85 inches).

Don’t forget that these percentage rules apply to values around the mean. In other words,
half the values will be greater than the mean and half the values will be lower than the mean.
You will often see this graphically illustrated with a “normal curve” or “bell curve.”

294



Warning in geom_segment(aes(x = 68, y = 0, xend = 68, yend = peak), color = "red", : All aesthetics have length 1, but the data has 2 rows.
i Please consider using `annotate()` or provide this layer with data containing
a single row.

1 SD 
 68%

1 SD 
 68%

2 SD 
 95%

2 SD 
 95%

3 SD 

 99%

3 SD 

 99%

24.20 35.15 46.10 57.05 68.00 78.95 89.90 100.85 111.80
Heights

Unfortunately, the current data is nowhere near normally distributed and does not make for
a good example of this rule.

21.1 Comparing distributions

Now that you understand what the different measures of distribution are and how they are
calculated, let’s further develop your “feel” for interpreting them. We can do this by comparing
different simulated distributions.

sim_data <- tibble(
all_68 = rep(68, 20),
half_58_78 = c(rep(58, 10), rep(78, 10)),
even_58_78 = seq(from = 58, to = 78, length.out = 20),
half_48_88 = c(rep(48, 10), rep(88, 10)),
even_48_88 = seq(from = 48, to = 88, length.out = 20)

)
sim_data

295



# A tibble: 20 x 5
all_68 half_58_78 even_58_78 half_48_88 even_48_88
<dbl> <dbl> <dbl> <dbl> <dbl>

1 68 58 58 48 48
2 68 58 59.1 48 50.1
3 68 58 60.1 48 52.2
4 68 58 61.2 48 54.3
5 68 58 62.2 48 56.4
6 68 58 63.3 48 58.5
7 68 58 64.3 48 60.6
8 68 58 65.4 48 62.7
9 68 58 66.4 48 64.8
10 68 58 67.5 48 66.9
11 68 78 68.5 88 69.1
12 68 78 69.6 88 71.2
13 68 78 70.6 88 73.3
14 68 78 71.7 88 75.4
15 68 78 72.7 88 77.5
16 68 78 73.8 88 79.6
17 68 78 74.8 88 81.7
18 68 78 75.9 88 83.8
19 68 78 76.9 88 85.9
20 68 78 78 88 88

� Here’s what we did above:

• We created a data frame with 5 simulated distributions:

– all_68 has a value of 68 repeated 20 times

– half_58_78 is made up of the values 58 and 78, each repeated 10 times (similar to
our example above)

– even_58_78 is 20 evenly distributed numbers between 58 and 78

– half_48_88 is made up of the values 48 and 88, each repeated 10 times

– even_48_88 is 20 evenly distributed numbers between 48 and 88

We will use this simulated data to quickly demonstrate a couple of these concepts. Let’s use
R to calculate and compare the mean, variance, and standard deviation of each variable.

296



tibble(
Column = names(sim_data),
Mean = purrr::map_dbl(sim_data, mean),
Variance = purrr::map_dbl(sim_data, var),
SD = purrr::map_dbl(sim_data, sd)

)

# A tibble: 5 x 4
Column Mean Variance SD
<chr> <dbl> <dbl> <dbl>

1 all_68 68 0 0
2 half_58_78 68 105. 10.3
3 even_58_78 68 38.8 6.23
4 half_48_88 68 421. 20.5
5 even_48_88 68 155. 12.5

� Here’s what we did above:

• We created a data frame to hold some summary statistics about each column in the
“sim_data” data frame.

• We used the map_dbl() function from the purrr package to iterate over each column in
the data. Don’t worry too much about this right now. We will talk more about iteration
and the purrr package later in the book.

So, for all the columns the mean is 68 inches. And that makes sense, right? We set the
middle value and/or most commonly occurring value to be 68 inches for each of these variables.
However, the variance and standard deviation are quite different.

For the column “all_68” the variance and standard deviation are both zero. If you think
about it, this should make perfect sense: all the values are 68 – they don’t vary – and each
observations distance from the mean (68) is zero.

When comparing the rest of the columns notice that all of them have a non-zero variance. This
is because not all people have the same value in that column – they vary. Additionally, we can
see very clearly that variance (and standard deviation) are affected by at least two things:

1. First is the distribution of values across the range of possible values. For example,
half_58_78 and half_48_88 have a larger variance than even_58_78 and even_48_88
because all the values are clustered at the min and max - far away from the mean.

2. The second property of the data that is clearly influencing variance is the width of the
range of values included in the distribution. For example, even_48_88 has a larger vari-
ance and standard deviation than even_58_78, even though both are evenly distributed

297



across the range of possible values. The reason is because the range of possible values is
larger, and therefore the range of distances from the mean is larger too.

In summary, although the variance and standard deviation don’t always have a really intuitive
meaning all by themselves, we can get some useful information by comparing them. Generally
speaking, the variance is larger when values are clustered at very low or very high values away
from the mean, or when values are spread across a wider range.

298



22 Describing the Relationship Between a
Continuous Outcome and a Continuous
Predictor

Before covering anything new, let’s quickly review the importance and utility of descriptive
analysis.

1. We can use descriptive analysis to uncover errors in our data

2. Descriptive analysis helps us understand the distribution of values in our variables

3. Descriptive analysis serves as a starting point for understanding relationships between
our variables

In the first few lessons on descriptive analysis we covered performing univariate analysis. That
is, analyzing a single numerical or a single categorical variable. In this module, we’ll learn
methods for describing relationships between two variables. This is also called bivariate analy-
sis.

For example, we may be interested in knowing if there is a relationship between heart rate
and exercise. If so, we may ask ourselves if heart rate differs, on average, by daily minutes of
exercise. And, we could answer that question with the using a bivariate descriptive analysis.

Before performing any such bivariate descriptive analysis, you should ask yourself what types of
variables you will analyze. We’ve already discussed the difference between numerical variables
and categorical variables, but we will also need to decide whether each variable is an outcome
or a predictor.

1. Outcome variable: The variable whose value we are attempting to predict, estimate,
or determine is the outcome variable. The outcome variable may also be referred to as
the dependent variable or the response variable.

2. Predictor variable: The variable that we think will determine, or at least help us
predict, the value of the outcome variable is called the predictor variable. The predictor
variable may also be referred to as the independent variable or the explanatory variable.

299



Figure 22.1: Comparing outcome and predictor variables

So, think back to our interest in whether or not heart rate differs by daily minutes of exercise.
In this scenario, which variable is the predictor and which is the outcome?

In this scenario daily minutes of exercise is the predictor and heart rate is the outcome.

Heart rate is the variable we’re interested in predicting or understanding, and exercise is a
variable that we think helps to predict or explain heart rate.

In this first chapter on bivariate analysis, we will learn a simple method for describing the
relationship between a continuous outcome variable and a continuous predictor variable – the
Pearson Correlation Coefficient.

300



Figure 22.2: Describing the relationship between outcome and predictor variables

22.1 Pearson Correlation Coefficient

Pearson’s Correlation Coefficient is a parametric measure of the linear relationship between
two numerical variables. It’s also referred to as rho (pronounced like “row”) and can be written
shorthand as a lowercase 𝑟. The Pearson Correlation Coefficient can take on values between
-1 and 1, including zero.

301



Figure 22.3: Pearson’s correlation coefficient range of values

A value of 0 indicates that there is no linear correlation between the two variables.

302



Figure 22.4: Pearson’s correlation coefficient value of 0

A negative value indicates that there is a negative linear correlation between the two variables.
In other words, as the value of x increases, the value of y decreases. Or, as the value of x
decreases, the value of y increases.

303



Figure 22.5: Negative Pearson’s correlation coefficient values

A positive value indicates that there is a positive linear correlation between the two variables.
As the value of x increases, the value of y increases. Or as the value of x decreases, the value
of y decreases.

304



Figure 22.6: Positive Pearson’s correlation coefficient values

Warning

When the relationship between two variables is nonlinear, or when outliers are present,
the correlation coefficient might incorrectly estimate the strength of the relationship.
Plotting the data enables you to verify the linear relationship and to identify the potential
outliers.

22.1.1 Calculating r

In this first code chunk, we’re going to use some simple simulated data to develop an intuition
about describing the relationship between two continuous variables.

# Load the dplyr package
library(dplyr)
# Load the ggplot2 package
library(ggplot2)

305



set.seed(123)
df <- tibble(
id = 1:20,
x = sample(x = 0:100, size = 20, replace = TRUE),
y = sample(x = 0:100, size = 20, replace = TRUE)

)
df

# A tibble: 20 x 3
id x y

<int> <int> <int>
1 1 30 71
2 2 78 25
3 3 50 6
4 4 13 41
5 5 66 8
6 6 41 82
7 7 49 35
8 8 42 77
9 9 100 80
10 10 13 42
11 11 24 75
12 12 89 14
13 13 90 31
14 14 68 6
15 15 90 8
16 16 56 40
17 17 91 73
18 18 8 22
19 19 92 26
20 20 98 59

� Here’s what we did above:

• We created a data frame with 3 simulated variables – id, x, and y.

• We used the sample() function to create x and y by sampling a number between 0 and
100 at random, 20 times.

• The replace = TRUE option tells R that the same number can be selected more than
once.

• The set.seed() function is to ensure that we get the same random numbers every time
we run the code chunk.

306



There is nothing special about 0 and 100; they are totally arbitrary. But, because all of these
values are chosen at random, we have no reason to believe that there should be any relationship
between them. Accordingly, we should also expect the Pearson Correlation Coefficient to be 0
(or very close to it).

In order to develop an intuition, let’s first plot this data, and get a feel for what it looks like.

ggplot(df, aes(x, y)) +
geom_point() +
theme_bw()

20

40

60

80

25 50 75 100
x

y

Above, we’ve created a nice scatter plot using ggplot2(). But, how do we interpret it? Well,
each dot corresponds to a person in our data at the point where their x value intersects with
their y value. This is made clearer by adding a geom_text() layer to our plot.

ggplot(df, aes(x, y)) +
geom_point() +
geom_text(aes(label = id), nudge_x = 1.5, nudge_y = 2) +
theme_bw()

307



1

2

3

4

5

6

7

8
9

10

11

12

13

14 15

16

17

18
19

20

20

40

60

80

25 50 75 100
x

y

� Here’s what we did above:

• We added a geom_text() layer to our plot in order to make it clear which person each
dot represents.

• The nudge_x = 1.5 option moves our text (the id number) to the right 1.5 units. The
nudge_y = 2 option moves our text 2 units up. We did this to make the id number
easier to read. If we had not nudged them, they would have been placed directly on top
of the points.

For example, person 1 in our simulated data had an x value of 30 and a y value of 71. When
you look at the plot above, does it look like person 1’s point is approximately at (x = 30, y =
71)? If we want to emphasize the point even further, we can plot a vertical line at x = 30 and
a horizontal line at y = 71. Let’s do that below.

ggplot(df, aes(x, y)) +
geom_text(aes(label = id), nudge_x = 1.5, nudge_y = 2) +
geom_vline(xintercept = 30, col = "red", size = 0.25) +
geom_hline(yintercept = 71, col = "red", size = 0.25) +
geom_point() +
theme_bw()

Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
i Please use `linewidth` instead.

308



1

2

3

4

5

6

7

8
9

10

11

12

13

14 15

16

17

18
19

20

20

40

60

80

25 50 75 100
x

y

As you can see, the dot representing id 1 is at the intersection of these two lines.

So, we know how to read the plot now, but we still don’t really know anything about the
relationship between x and y. Remember, we want to be able to characterize x and y as having
one of these 5 relationships:

309



Figure 22.7: Relationship between the outcome and the predictor

Looking again at our scatter plot, which relationship do you think x and y have?

ggplot(df, aes(x, y)) +
geom_point() +
geom_text(aes(label = id), nudge_x = 1.5, nudge_y = 2) +
geom_point(aes(x, y), tibble(x = 100, y = 80), shape = 1, size = 16, col = "red") +
geom_point(aes(x, y), tibble(x = 90, y = 8), shape = 1, size = 16, col = "blue") +
theme_bw()

310



1

2

3

4

5

6

7

8
9

10

11

12

13

14 15

16

17

18
19

20

20

40

60

80

25 50 75 100
x

y

Well, if you look at id 9 above, x is a high number (100) and y is a high number (80). But if
you look at id 15, x is a high number (90) and y is a low number (8). In other words, these
dots are scattered all over the chart area. There doesn’t appear to be much of a pattern, trend,
or relationship. And that’s exactly what we would expect from randomly generated data.

Now that we know what this data looks like, and we intuitively feel as though x and y are
unrelated, it would be nice to quantify our results in some way. And, that is precisely what
the Pearson Correlation Coefficient does.

cor.test(x = df$x, y = df$y)

Pearson's product-moment correlation

data: df$x and df$y
t = -0.60281, df = 18, p-value = 0.5542
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
-0.5490152 0.3218878
sample estimates:

cor
-0.1406703

311



� Here’s what we did above:

• By default, R’s cor.test() function gives us a list of information about the relationship
between x and y. The very last number in the output (-0.1406703) is the Pearson
Correlation Coefficient.

• The fact that this value is negative (between -1 and 0) tells us that x and y tend to vary
in opposite directions.

• The numeric value (0.1406703) tells us something about the strength of the relationship
between x and y. In this case, the relationship is not strong – exactly what we expected.

– You will sometimes hear rules of thumb for interpreting the strength of 𝑟 such as7:

∗ ±0.1 = Weak correlation

∗ ±0.3 = Medium correlation

∗ ±0.5 = Strong correlation

– Rules of thumb like this are useful as you are learning; however, you want to make
sure you don’t become overly reliant on them. As you get more experience, you will
want to start interpreting effect sizes in the context of your data and the specific
research question at hand.

• The p-value (0.5542) tells us that we’d be pretty likely to get the result we got even if
there really were no relationship between x and y – assuming all other assumptions
are satisfied and the sample was collected without bias.

• Taken together, the weak negative correlation and p-value tell us that there is not much
– if any – relationship between x and y. Another way to say the same thing is, “x and y
are statistically independent.”

22.1.2 Correlation intuition

To further bolster our intuition about these relationships, let’s look at a few positively and
negatively correlated variables.

# Positively correlated data
tibble(
x = 1:10,
y = 100:109,
r = cor(x, y)

) %>%
ggplot() +

geom_point(aes(x, y)) +

312



geom_text(aes(x = 2.5, y = 107.5, label = paste("r = ", r)), col = "blue") +
theme_classic()

r =  1r =  1r =  1r =  1r =  1r =  1r =  1r =  1r =  1r =  1

100.0

102.5

105.0

107.5

2.5 5.0 7.5 10.0
x

y

Above, we created positively correlated data. In fact, this data is perfectly positively correlated.
That is, every time the value of x increases, the value of y increases by a proportional amount.
Now, instead of being randomly scattered around the plot area, the dots line up in a perfect,
upward-sloping, diagonal line. We also added the correlation coefficient directly to the plot. As
you can see, it is exactly 1. This is what you should expect from perfectly positively correlated
data.

How about this next data set? Now, every time x decreases by one, y decreases by one. Is this
positively or negatively correlated data?

df <- tibble(
x = 1:-8,
y = 100:91

)
df

# A tibble: 10 x 2
x y

<int> <int>
1 1 100

313



2 0 99
3 -1 98
4 -2 97
5 -3 96
6 -4 95
7 -5 94
8 -6 93
9 -7 92
10 -8 91

df %>%
mutate(r = cor(x, y)) %>%
ggplot() +

geom_point(aes(x, y)) +
geom_text(aes(x = -6, y = 98, label = paste("r = ", r)), col = "blue") +
theme_classic()

r =  1r =  1r =  1r =  1r =  1r =  1r =  1r =  1r =  1r =  1

92.5

95.0

97.5

100.0

−8 −6 −4 −2 0
x

y

This is still perfectly positively correlated data. The values for x and y are still changing in the
same direction proportionately. The fact that the direction is one of decreasing value makes
no difference.

One last simulated example here. This time, as x increases by one, y decreases by one. Let’s
plot this data and calculate the Pearson Correlation Coefficient.

314



tibble(
x = 1:10,
y = 100:91,
r = cor(x, y)

) %>%
ggplot() +

geom_point(aes(x, y)) +
geom_text(aes(x = 7.5, y = 98, label = paste("r = ", r)), col = "blue") +
theme_classic()

r =  −1r =  −1r =  −1r =  −1r =  −1r =  −1r =  −1r =  −1r =  −1r =  −1

92.5

95.0

97.5

100.0

2.5 5.0 7.5 10.0
x

y

This is what perfectly negatively correlated data looks like. The dots line up in a perfect,
downward-sloping diagonal line, and when we check the value of rho, we see that it is exactly
-1.

Of course, as you may have suspected, in real life things are almost never this cut and dry. So,
let’s investigate the relationship between continuous variables using more realistic data.

In this example, we will use data from an actual class survey conducted in the past:

class <- tibble(
ht_in = c(70, 63, 62, 67, 67, 58, 64, 69, 65, 68, 63, 68, 69, 66, 67, 65,

64, 75, 67, 63, 60, 67, 64, 73, 62, 69, 67, 62, 68, 66, 66, 62,
64, 68, NA, 68, 70, 68, 68, 66, 71, 61, 62, 64, 64, 63, 67, 66,

315



69, 76, NA, 63, 64, 65, 65, 71, 66, 65, 65, 71, 64, 71, 60, 62,
61, 69, 66, NA),

wt_lbs = c(216, 106, 145, 195, 143, 125, 138, 140, 158, 167, 145, 297, 146,
125, 111, 125, 130, 182, 170, 121, 98, 150, 132, 250, 137, 124,
186, 148, 134, 155, 122, 142, 110, 132, 188, 176, 188, 166, 136,
147, 178, 125, 102, 140, 139, 60, 147, 147, 141, 232, 186, 212,
110, 110, 115, 154, 140, 150, 130, NA, 171, 156, 92, 122, 102,
163, 141, NA)

)

Next, we’re going to use a scatter plot to explore the relationship between height and weight
in this data.

ggplot(class, aes(ht_in, wt_lbs)) +
geom_jitter() +
theme_classic()

Warning: Removed 4 rows containing missing values or values outside the scale range
(`geom_point()`).

50

100

150

200

250

300

60 65 70 75
ht_in

w
t_

lb
s

Quickly, what do you think? Will height and weight be positively correlated, negatively
correlated, or not correlated?

316



cor.test(class$ht_in, class$wt_lbs)

Pearson's product-moment correlation

data: class$ht_in and class$wt_lbs
t = 5.7398, df = 62, p-value = 3.051e-07
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.4013642 0.7292714
sample estimates:

cor
0.5890576

The dots don’t line up in a perfectly upward – or downward – slope. But the general trend is
still an upward slope. Additionally, we can see that height and weight are positively correlated
because the value of the correlation coefficient is between 0 and positive 1 (0.5890576). By
looking at the p-value (3.051e-07), we can also see that the probability of finding a correlation
value this large or larger in our sample if the true value of the correlation coefficient in the
population from which our sample was drawn is zero, is very small.

That’s quite a mouthful, right? In more relatable terms, you can just think of it this way.
In our data, as height increases weight tends to increase as well. Our p-value indicates that
it’s pretty unlikely that we would get this result if there were truly no relationship in the
population this sample was drawn from – assuming it’s an unbiased sample.

Quick detour: The p-value above is written in scientific notation, which you may not have seen
before. We’ll quickly show you how to basically disable scientific notation in R.

options(scipen = 999)
cor.test(class$ht_in, class$wt_lbs)

Pearson's product-moment correlation

data: class$ht_in and class$wt_lbs
t = 5.7398, df = 62, p-value = 0.0000003051
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.4013642 0.7292714
sample estimates:

cor
0.5890576

317



� Here’s what we did above:

• We used the R global option options(scipen = 999) to display decimal numbers in-
stead of scientific notation. Because this is a global option, it will remain in effect
until you restart your R session. If you do restart your R session, you will have to run
options(scipen = 999) again to disable scientific notation.

Finally, wouldn’t it be nice if we could draw a line through this graph that sort of quickly
summarizes this relationship (or lack thereof). Well, that is exactly what an Ordinary Least
Squares (OLS) regression line does.

To add a regression line to our plot, all we need to do is add a geom_smooth() layer to our
scatterplot with the method argument set to lm. Let’s do that below and take a look.

ggplot(class, aes(ht_in, wt_lbs)) +
geom_smooth(method = "lm") +
geom_jitter() +
theme_classic()

`geom_smooth()` using formula = 'y ~ x'

Warning: Removed 4 rows containing non-finite outside the scale range
(`stat_smooth()`).

Warning: Removed 4 rows containing missing values or values outside the scale range
(`geom_point()`).

318



50

100

150

200

250

300

60 65 70 75
ht_in

w
t_

lb
s

The exact calculation for deriving this line is beyond the scope of this chapter. In general,
though, you can think of the line as cutting through the middle of all of your points and
representing the average change in the y value given a one-unit change in the x value. So
here, the upward slope indicates that, on average, as height (the x value) increases, so does
weight (the y value). And that is completely consistent with our previous conclusions about
the relationship between height and weight.

319



23 Describing the Relationship Between a
Continuous Outcome and a Categorical
Predictor

Up until now, we have only ever looked at the overall mean of a continuous variable. For
example, the mean height for the entire class. However, we often want to estimate the means
within levels, or categories, of another variable. For example, we may want to look at the
mean height within gender. Said another way, we want to know the mean height for men and
separately the mean height for women.

More generally, in this lesson you will learn to perform bivariate analysis when the outcome
is continuous and the predictor is categorical.

320



Figure 23.1: Continuous outcome and categorical predictor

Typically in a situation such as this, all we need to do is apply the analytic methods we’ve
already learned for a single continuous outcome, but apply them separately within levels of
our categorical predictor variable. Below, we’ll walk through doing so with R. To start with,
we will again use our previously collected class survey data.

library(dplyr)
library(ggplot2)

class <- tibble(
age = c(32, 30, 32, 29, 24, 38, 25, 24, 48, 29, 22, 29, 24, 28, 24, 25,

25, 22, 25, 24, 25, 24, 23, 24, 31, 24, 29, 24, 22, 23, 26, 23,
24, 25, 24, 33, 27, 25, 26, 26, 26, 26, 26, 27, 24, 43, 25, 24,
27, 28, 29, 24, 26, 28, 25, 24, 26, 24, 26, 31, 24, 26, 31, 34,
26, 25, 27, NA),

age_group = c(2, 2, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1,
1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2,

321



2, 1, 1, 1, NA),
gender = c(2, 1, 1, 2, 1, 1, 1, 2, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1,

1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1,
1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 1, 1, 2, 1, 2, 1,
1, 1, 2, 1, NA),

ht_in = c(70, 63, 62, 67, 67, 58, 64, 69, 65, 68, 63, 68, 69, 66, 67, 65,
64, 75, 67, 63, 60, 67, 64, 73, 62, 69, 67, 62, 68, 66, 66, 62,
64, 68, NA, 68, 70, 68, 68, 66, 71, 61, 62, 64, 64, 63, 67, 66,
69, 76, NA, 63, 64, 65, 65, 71, 66, 65, 65, 71, 64, 71, 60, 62,
61, 69, 66, NA),

wt_lbs = c(216, 106, 145, 195, 143, 125, 138, 140, 158, 167, 145, 297, 146,
125, 111, 125, 130, 182, 170, 121, 98, 150, 132, 250, 137, 124,
186, 148, 134, 155, 122, 142, 110, 132, 188, 176, 188, 166, 136,
147, 178, 125, 102, 140, 139, 60, 147, 147, 141, 232, 186, 212,
110, 110, 115, 154, 140, 150, 130, NA, 171, 156, 92, 122, 102,
163, 141, NA),

bmi = c(30.99, 18.78, 26.52, 30.54, 22.39, 26.12, 23.69, 20.67, 26.29,
25.39, 25.68, 45.15, 21.56, 20.17, 17.38, 20.8, 22.31, 22.75,
26.62, 21.43, 19.14, 23.49, 22.66, 32.98, 25.05, 18.31, 29.13,
27.07, 20.37, 25.01, 19.69, 25.97, 18.88, 20.07, NA, 26.76,
26.97, 25.24, 20.68, 23.72, 24.82, 23.62, 18.65, 24.03, 23.86,
10.63, 23.02, 23.72, 20.82, 28.24, NA, 37.55, 18.88, 18.3,
19.13, 21.48, 22.59, 24.96, 21.63, NA, 29.35, 21.76, 17.97,
22.31, 19.27, 24.07, 22.76, NA),

bmi_3cat = c(3, 1, 2, 3, 1, 2, 1, 1, 2, 2, 2, 3, 1, 1, 1, 1, 1, 1, 2, 1, 1,
1, 1, 3, 2, 1, 2, 2, 1, 2, 1, 2, 1, 1, NA, 2, 2, 2, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 2, NA, 3, 1, 1, 1, 1, 1, 1, 1, NA, 2, 1,
1, 1, 1, 1, 1, NA)

) %>%
mutate(

age_group = factor(age_group, labels = c("Younger than 30", "30 and Older")),
gender = factor(gender, labels = c("Female", "Male")),
bmi_3cat = factor(bmi_3cat, labels = c("Normal", "Overweight", "Obese"))

) %>%
print()

# A tibble: 68 x 7
age age_group gender ht_in wt_lbs bmi bmi_3cat

<dbl> <fct> <fct> <dbl> <dbl> <dbl> <fct>
1 32 30 and Older Male 70 216 31.0 Obese
2 30 30 and Older Female 63 106 18.8 Normal
3 32 30 and Older Female 62 145 26.5 Overweight

322



4 29 Younger than 30 Male 67 195 30.5 Obese
5 24 Younger than 30 Female 67 143 22.4 Normal
6 38 30 and Older Female 58 125 26.1 Overweight
7 25 Younger than 30 Female 64 138 23.7 Normal
8 24 Younger than 30 Male 69 140 20.7 Normal
9 48 30 and Older Male 65 158 26.3 Overweight
10 29 Younger than 30 Male 68 167 25.4 Overweight
# i 58 more rows

23.1 Single predictor and single outcome

We can describe our continuous outcome variables using the same methods we learned in
previous lessons. However, this time we will use dplyr's group_by() function to calculate
these statistics within subgroups of interests. For example:

class_summary <- class %>%
filter(!is.na(ht_in)) %>%
group_by(gender) %>%
summarise(

n = n(),
mean = mean(ht_in),
`standard deviation` = sd(ht_in),
min = min(ht_in),
max = max(ht_in)

) %>%
print()

# A tibble: 2 x 6
gender n mean `standard deviation` min max
<fct> <int> <dbl> <dbl> <dbl> <dbl>

1 Female 43 64.3 2.59 58 69
2 Male 22 69.2 2.89 65 76

� Here’s what we did above:

• We used base R’s statistical functions inside dplyr's summarise() function to calculate
the number of observations, mean, standard deviation, minimum value and maximum
value of height within levels of gender.

323



• We used filter(!is.na(ht_in)) to remove all rows from the data that have a missing
value for “ht_in”. If we had not done so, R would have returned a value of “NA” for
mean, standard deviation, min, and max. Alternatively, we could have added the na.rm
= TRUE option to each of the mean(), sd(), min(), and max() functions.

• We used group_by(gender) to calculate our statistics of interest separately within each
category of the variable “gender.” In this case, “Female” and “Male.”

• You may notice that we used back ticks around the variable name “standard deviation”
– NOT single quotes. If you want to include a space in a variable name in R, you must
surround it with back ticks. In general, it’s a really bad idea to create variable names
with spaces in them. It is recommend that you only do so in situations where you are
using a data frame to display summary information, as we did above.

• Notice too that we saved our summary statistics table as data frame named
“class_summary.” Doing so is sometimes useful, especially for plotting as we will
see below.

As you look over this table, you should have an idea of whether male or female students in the
class appear to be taller on average, and whether male or female students in the class appear
to have more dispersion around the mean value.

Finally, let’s plot this data to get a feel for the relationship between gender and height graph-
ically.

class %>%
filter(!is.na(ht_in)) %>%
ggplot(aes(x = gender, y = ht_in)) +

geom_jitter(aes(col = gender), width = 0.20) +
geom_segment(
aes(x = c(0.75, 1.75), y = mean, xend = c(1.25, 2.25), yend = mean, col = gender),
size = 1.5, data = class_summary

) +
scale_x_discrete("Gender") +
scale_y_continuous("Height (Inches)") +
scale_color_manual(values = c("#BC581A", "#00519B")) +
theme_classic() +
theme(legend.position = "none", axis.text.x = element_text(size = 12))

Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
i Please use `linewidth` instead.

324



60

65

70

75

Female Male
Gender

H
ei

gh
t (

In
ch

es
)

� Here’s what we did above:

• We used ggplot2 to plot each student’s height as well as the mean heights of female and
male students respectively.

• The geom_jitter() function plots a point for each student’s height, and then makes
slight random adjustments to the location of the points so that they are less likely to
overlap. One of the great things about plotting our data like this is that we can quickly
see if there are many more observations in one category than another. That information
would be obscured if we were to use a box plot.

• The geom_segment() function creates the two horizontal lines at the mean values of
height. Notice we used a different data frame – class_summary – using the data =
class_summary argument to plot the mean values.

• We changed the x and y axis titles using the scale_x_discrete() and scale_y_continuous()
functions.

• We changed the default ggplot colors to orange and blue (Go Gators! �) using the
scale_color_manual() function.

• We simplified the plot using the theme_classic() function.

• theme(legend.position = "none", axis.text.x = element_text(size = 12))
removed the legend and increased the size of the x-axis labels a little bit.

325



After checking both numerical and graphical descriptions of the relationship between gender
and height we may conclude that male students were taller, on average, than female students.

23.2 Multiple predictors

At times we may be interested in comparing continuous outcomes across levels of two or more
categorical variables. As an example, perhaps we want to describe BMI by gender and age
group. All we have to do is add age group to the group_by() function.

class_summary <- class %>%
filter(!is.na(bmi)) %>%
group_by(gender, age_group) %>%
summarise(

n = n(),
mean = mean(bmi),
`standard deviation` = sd(bmi),
min = min(bmi),
max = max(bmi)

) %>%
print()

# A tibble: 4 x 7
# Groups: gender [2]
gender age_group n mean `standard deviation` min max
<fct> <fct> <int> <dbl> <dbl> <dbl> <dbl>

1 Female Younger than 30 35 23.1 5.41 17.4 45.2
2 Female 30 and Older 8 21.8 5.67 10.6 26.8
3 Male Younger than 30 19 24.6 3.69 19.7 33.0
4 Male 30 and Older 2 28.6 3.32 26.3 31.0

And we can see these statistics for BMI within levels of gender separately for younger and older
students. Males that are 30 and older report, on average, the highest BMI (28.6). Females
age 30 and older report, on average, the lowest BMI (21.8). This is good information, but
often when comparing groups a picture really is worth a thousand words. Let’s wrap up this
chapter with one final plot.

class %>%
filter(!is.na(bmi)) %>%
ggplot(aes(x = age_group, y = bmi)) +

facet_wrap(vars(gender)) +

326



geom_jitter(aes(col = age_group), width = 0.20) +
geom_segment(
aes(x = rep(c(0.75, 1.75), 2), y = mean, xend = rep(c(1.25, 2.25), 2), yend = mean,

col = age_group),
size = 1.5, data = class_summary

) +
scale_x_discrete("Age Group") +
scale_y_continuous("BMI") +
scale_color_manual(values = c("#BC581A", "#00519B")) +
theme_classic() +
theme(legend.position = "none", axis.text.x = element_text(size = 10))

Female Male

Younger than 30 30 and Older Younger than 30 30 and Older

10

20

30

40

Age Group

B
M

I

� Here’s what we did above:

• We used the same code for this plot that we used for the first height by gender plot. The
only difference is that we added facet_wrap(vars(gender)) to plot males and females
on separate plot panels.

327



24 Describing the Relationship Between a
Categorical Outcome and a Categorical
Predictor

Generally speaking, there is no good way to describe the relationship between a continuous
predictor and a categorical outcome.

Figure 24.1: Categorical outcome and categorical predictor

So, when your outcome is categorical, the predictor must also be categorical. Therefore, any
continuous predictor variables must be collapsed into categories before conducting bivariate
analysis when your outcome is categorical. The best categories are those that have scientific

328



or clinical meaning. For example, collapsing raw scores on a test of cognitive function into a
categorical variable for cognitive impairment. The variable could be dichotomous (yes, no) or
it could have multiple levels (no, mild cognitive impairment, dementia).

Figure 24.2: Categorizing outcomes

Once your continuous variables are collapsed you’re ready to create n-way frequency tables
that will allow you to describe the relationship between two or more categorical variables. To
start with, we will once again use our previously collected class survey data.

library(dplyr)
library(ggplot2)

class <- tibble(
age = c(32, 30, 32, 29, 24, 38, 25, 24, 48, 29, 22, 29, 24, 28, 24, 25,

25, 22, 25, 24, 25, 24, 23, 24, 31, 24, 29, 24, 22, 23, 26, 23,
24, 25, 24, 33, 27, 25, 26, 26, 26, 26, 26, 27, 24, 43, 25, 24,
27, 28, 29, 24, 26, 28, 25, 24, 26, 24, 26, 31, 24, 26, 31, 34,
26, 25, 27, NA),

329



age_group = c(2, 2, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1,
1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2,
2, 1, 1, 1, NA),

gender = c(2, 1, 1, 2, 1, 1, 1, 2, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1,
1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1,
1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 1, 1, 2, 1, 2, 1,
1, 1, 2, 1, NA),

ht_in = c(70, 63, 62, 67, 67, 58, 64, 69, 65, 68, 63, 68, 69, 66, 67, 65,
64, 75, 67, 63, 60, 67, 64, 73, 62, 69, 67, 62, 68, 66, 66, 62,
64, 68, NA, 68, 70, 68, 68, 66, 71, 61, 62, 64, 64, 63, 67, 66,
69, 76, NA, 63, 64, 65, 65, 71, 66, 65, 65, 71, 64, 71, 60, 62,
61, 69, 66, NA),

wt_lbs = c(216, 106, 145, 195, 143, 125, 138, 140, 158, 167, 145, 297, 146,
125, 111, 125, 130, 182, 170, 121, 98, 150, 132, 250, 137, 124,
186, 148, 134, 155, 122, 142, 110, 132, 188, 176, 188, 166, 136,
147, 178, 125, 102, 140, 139, 60, 147, 147, 141, 232, 186, 212,
110, 110, 115, 154, 140, 150, 130, NA, 171, 156, 92, 122, 102,
163, 141, NA),

bmi = c(30.99, 18.78, 26.52, 30.54, 22.39, 26.12, 23.69, 20.67, 26.29,
25.39, 25.68, 45.15, 21.56, 20.17, 17.38, 20.8, 22.31, 22.75,
26.62, 21.43, 19.14, 23.49, 22.66, 32.98, 25.05, 18.31, 29.13,
27.07, 20.37, 25.01, 19.69, 25.97, 18.88, 20.07, NA, 26.76,
26.97, 25.24, 20.68, 23.72, 24.82, 23.62, 18.65, 24.03, 23.86,
10.63, 23.02, 23.72, 20.82, 28.24, NA, 37.55, 18.88, 18.3,
19.13, 21.48, 22.59, 24.96, 21.63, NA, 29.35, 21.76, 17.97,
22.31, 19.27, 24.07, 22.76, NA),

bmi_3cat = c(3, 1, 2, 3, 1, 2, 1, 1, 2, 2, 2, 3, 1, 1, 1, 1, 1, 1, 2, 1, 1,
1, 1, 3, 2, 1, 2, 2, 1, 2, 1, 2, 1, 1, NA, 2, 2, 2, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 2, NA, 3, 1, 1, 1, 1, 1, 1, 1, NA, 2, 1,
1, 1, 1, 1, 1, NA),

genhlth = c(2, 2, 3, 3, 2, 1, 2, 2, 2, 1, 3, 3, 1, 2, 2, 1, 2, NA, 3, 2, 3,
1, 2, 2, 2, 4, 2, 2, 2, 2, 1, 2, 2, 1, 2, 2, 3, 3, 2, 1, 3, 3,
2, 2, 3, 3, 2, 3, 2, 2, 3, 5, 3, 2, 3, 2, 3, 3, 2, 2, 3, 3, 3,
1, 2, 2, 1, 3),

persdoc = c(1, 2, 2, 1, 2, 0, 0, 1, 2, 0, 2, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0,
0, 1, 1, 1, 1, 2, 0, 0, 1, 1, 2, 1, 2, 0, 0, 2, 0, 0, 2, 2, 0,
NA, 0, 0, 0, 2, 0, 2, NA, 0, 2, 1, 1, 1, 2, 2, 0, 0, 0, 1, 2,
1, 1, 0, 0, 0, NA)

) %>%
mutate(

age_group = factor(age_group, labels = c("Younger than 30", "30 and Older")),

330



gender = factor(gender, labels = c("Female", "Male")),
bmi_3cat = factor(bmi_3cat, labels = c("Normal", "Overweight", "Obese")),
genhlth = factor(genhlth, labels = c("Excellent", "Very Good", "Good", "Fair", "Poor")),
persdoc = factor(persdoc, labels = c("No", "Yes, only one", "Yes, more than one"))

) %>%
print()

# A tibble: 68 x 9
age age_group gender ht_in wt_lbs bmi bmi_3cat genhlth persdoc

<dbl> <fct> <fct> <dbl> <dbl> <dbl> <fct> <fct> <fct>
1 32 30 and Older Male 70 216 31.0 Obese Very Good Yes, on~
2 30 30 and Older Female 63 106 18.8 Normal Very Good Yes, mo~
3 32 30 and Older Female 62 145 26.5 Overweight Good Yes, mo~
4 29 Younger than 30 Male 67 195 30.5 Obese Good Yes, on~
5 24 Younger than 30 Female 67 143 22.4 Normal Very Good Yes, mo~
6 38 30 and Older Female 58 125 26.1 Overweight Excellent No
7 25 Younger than 30 Female 64 138 23.7 Normal Very Good No
8 24 Younger than 30 Male 69 140 20.7 Normal Very Good Yes, on~
9 48 30 and Older Male 65 158 26.3 Overweight Very Good Yes, mo~
10 29 Younger than 30 Male 68 167 25.4 Overweight Excellent No
# i 58 more rows

24.1 Comparing two variables

We’ve already used R to create one-way descriptive tables for categorical variables. One-way
frequency tables can be interesting in their own right; however, most of the time we are
interested in the relationships between two variables. For example, think about when we
looked at mean height within levels of gender. This told us something about the relationship
between height and gender. While far from definite, our little survey provides some evidence
that women, on average, are shorter than men.

Well, we can describe the relationship between two categorical variables as well. One way of
doing so is with two-way frequency tables, which are also sometimes referred to as crosstabs
or contingency tables. Let’s start by simply looking at an example.

Below we use the same CrossTable() function that we used in the lesson on univariate analysis
of categorical data. The only difference is that we pass two vectors to the function instead of
one. The first variable will always form the rows, and the second variable will always form
the columns. In other words, we can say that we are creating a two-way table of persdoc by
genhealth.

331



df <- filter(class, !is.na(bmi_3cat)) # Drop rows with missing bmi
gmodels::CrossTable(df$persdoc, df$genhlth)

Cell Contents
|-------------------------|
| N |
| Chi-square contribution |
| N / Row Total |
| N / Col Total |
| N / Table Total |
|-------------------------|

Total Observations in Table: 61

| df$genhlth
df$persdoc | Excellent | Very Good | Good | Fair | Poor | Row Total |

-------------------|-----------|-----------|-----------|-----------|-----------|-----------|
No | 4 | 9 | 8 | 0 | 0 | 21 |

| 0.090 | 0.097 | 0.180 | 0.344 | 0.344 | |
| 0.190 | 0.429 | 0.381 | 0.000 | 0.000 | 0.344 |
| 0.400 | 0.310 | 0.400 | 0.000 | 0.000 | |
| 0.066 | 0.148 | 0.131 | 0.000 | 0.000 | |

-------------------|-----------|-----------|-----------|-----------|-----------|-----------|
Yes, only one | 4 | 12 | 6 | 1 | 0 | 23 |

| 0.014 | 0.104 | 0.315 | 1.029 | 0.377 | |
| 0.174 | 0.522 | 0.261 | 0.043 | 0.000 | 0.377 |
| 0.400 | 0.414 | 0.300 | 1.000 | 0.000 | |
| 0.066 | 0.197 | 0.098 | 0.016 | 0.000 | |

-------------------|-----------|-----------|-----------|-----------|-----------|-----------|
Yes, more than one | 2 | 8 | 6 | 0 | 1 | 17 |

| 0.222 | 0.001 | 0.033 | 0.279 | 1.867 | |
| 0.118 | 0.471 | 0.353 | 0.000 | 0.059 | 0.279 |
| 0.200 | 0.276 | 0.300 | 0.000 | 1.000 | |
| 0.033 | 0.131 | 0.098 | 0.000 | 0.016 | |

-------------------|-----------|-----------|-----------|-----------|-----------|-----------|
Column Total | 10 | 29 | 20 | 1 | 1 | 61 |

| 0.164 | 0.475 | 0.328 | 0.016 | 0.016 | |
-------------------|-----------|-----------|-----------|-----------|-----------|-----------|

332



Okay, let’s walk through this output together…

Figure 24.3: Cell contents

Think of little box labeled “Cell Contents” as a legend that tells you how to interpret the rest
of the boxes. Reading from top to bottom, the first number you encounter in a box will be
the frequency or count of observations (labeled N). The second number you encounter will be
the chi-square contribution. Please ignore that number for now. The third number will be the
row proportion. The fourth number will be the column proportion. And the fifth number will
be the overall proportion.

333



Figure 24.4: Table of summary statistics row headers

Reading the table of summary statistics from top to bottom, the row headers describe cate-
gories of persdoc, which are one, only one, and more than one.

334



Figure 24.5: Table of summary statistics column headers

Reading from left to right, the column headers describe categories of genhealth, which are
excellent, very good, good, fair, and poor.

335



Figure 24.6: Total frequency and proportion of observations in each category defined by
columns

The bottom row gives the total frequency and proportion of observations that fall in each of
the categories defined by the columns. For example, 10 students – about 0.164 of the entire
class – reported being in excellent general health.

336



Figure 24.7: Total frequency and proportion of observations in each category defined by rows

The far-right column gives the total frequency and proportion of observations that fall in each
of the categories defined by the rows. For example, 23 students – about 0.377 of the entire
class – reported that they have exactly one person that they think of as their personal doctor
or healthcare provider.

337



Figure 24.8: Total frequency and proportion of observations in each category defined by rows

And the bottom right corner gives the overall total frequency of observations in the table.
Together, the last row, the far-right column, and the bottom right cell make up what are
called the marginal totals because they are on the outer margin of the table.

Next, let’s interpret the data contained in the first cell with data.

338



Figure 24.9: First cell

The first number is the frequency. There are 4 students that do not have a personal doctor
and report being in excellent health.

339



Figure 24.10: First number - cell frequency

The third number is the row proportion. The row this cell is in is the No row, which includes
21 students. Out of the 21 total students in the No row, 4 reported being in excellent health.
4 divided by 21 is 0.190. Said another way, 19% of students with no personal doctor reported
being in excellent health.

340



Figure 24.11: Third number - row proportion

The fourth number is the column proportion. This cell is in the Excellent column. Of the
10 students in the Excellent column, 4 reported that they do not have a personal doctor. 4
out of 10 is 0.4. Said another way, 40% of students who report being in excellent health have
no personal doctor.

341



Figure 24.12: Fourth number - column proportion

The last number is the overall proportion. So, 4 out of the 61 total students in this analysis
have no personal doctor and report being in excellent health. Four out of 61 is 0.066. So, about
7% of all the students in the class have no personal doctor and are in excellent health.

Now that you know how to read the table, let’s point out a couple subtleties that may not
have jumped out at you above.

1. The changing denominator. As we moved from the row proportion to the column
proportion and then the overall proportion, all that changed was the denominator (the
blue circle). And each time we did so we were describing the characteristics of a different
group of people: (1) students without a personal doctor, (2) students in excellent general
health, (3) all students – regardless of personal doctor or general health.

2. Language matters. Because we are actually describing the characteristics of different
subgroups, the language we use to interpret our results is important. For example, when
interpreting the row proportion above, we wrote, “19% of students with no personal
doctor reported being in excellent health.” This language implies that we’re describing
the health (characteristic) of students with no personal doctor (subgroup). It would be
completely incorrect to instead say, “19% of students in excellent health have no personal

342



doctor” or “19% of students have no personal doctor.” Those are interpretations of the
column percent and overall percent respectively. They are not interchangeable.

343



Part V

Data Management

344



25 Introduction to Data Management

Way back in Section 2.2.2, we told you that managing data includes all the things you may
have to do to your data to get it ready for analysis. We also talked about the 80/20 “rule.”
The basic idea of the 80/20 rule is that data management is where we will spend the majority
of our time and effort when we are involved in just about any project that makes use of
data. Unfortunately, we can’t cover strategies for overcoming every single data management
challenge that you will encounter in epidemiology. However, in this part of the book, we will
try to give you a foundation in some of the most common data management tasks that you
will encounter. We will also try to point you towards some of the best tools and resources for
data management that the R community has to offer.

25.1 Multiple paradigms for data management in R

Before moving on to providing you with examples of how to accomplish specific data man-
agement tasks, we think this is the right point in the book to touch on a couple of high-level
concepts that we have more or less ignored thus far.

R is pretty unique among the major statistical programming applications used in epidemiology
in many ways. Among them is that R has multiple paradigms for data management. That’s
what we’re calling them anyway. What we mean by that is that there are 3 primary packages
that the vast majority of R users use for data management. They are base R, data.table,
and dplyr. There is a tremendous amount of overlap in the data management tasks you can
perform with base R, data.table, and dplyr, but the syntax for each is very different. As
are the relative strengths and weaknesses.

In this book, we will primarily use the dplyr paradigm for data management. We will do
so because we believe in using the best tool to get the job done. Currently, we believe that
the best tool for managing data in R is usually dplyr, and especially when you are new to R.
However, there will be cases where we will show you how to use base R to accomplish a task.
Where we do this, it’s because we think that base R is the best tool for the job or because we
think you are very likely to see base R way used when you go looking for help with a related
data management challenge and we don’t want you to be totally clueless about what you’re
looking at.

As of this writing, we’ve decided not to specifically discuss using the data.table package for
data management. We think the data.table package is a great package, and we use it when

345



we think it’s the best tool for the job. However, we think the confusion caused by introducing
data.table in this text aimed primarily at inexperienced R users would cause more problems
than it would solve. The last thing we’ll say about data.table for now is that you may want
to consider learning more about data.table if you routinely work with very large data sets
(e.g., millions of rows). For reasons that are beyond the scope of this book, data.table is
currently much faster than dplyr. However, for most of the work we do, and all of what we
will do in this book, the time difference will be imperceptible to you. Literally milliseconds.

25.2 The dplyr package

At this point in the book, you’ve already been exposed to several of the most important func-
tions in the dplyr package. You saw the filter() function in the Speaking R’s language
chapter, the mutate() function in the chapter on exporting data, and the summarise() func-
tion all over the descriptive analysis part of the book. However, we mostly glossed over the
details at those points. In this section, we want to dive just a tiny bit deeper into how the
dplyr functions work – but not too deep.

25.2.1 The dplyr verbs

The dplyr package includes five main functions for managing data: mutate(), select(),
filter(), arrange(), and summarise(). These five functions are often referred to as the
dplyr verbs. And, the first two arguments to all five of these functions are .data and ....
Let’s go ahead and discuss those two arguments a little bit more.

Note

we don’t want to give you the impression that dplyr only contains 5 functions. In fact,
dplyr contains many functions, and they are all designed to work together in a very
intentional way.

25.2.2 The .data argument

I first introduced you to data frames in the Let’s get programming chapter and we’ve been using
them as our primary structure for storing and analyzing data in ever since. The R language
allows for other data structures (e.g., vectors, lists, and matrices), but data frames are the
most commonly used data structure for most of the kinds of things we do in epidemiology.
Thankfully, the dplyr package is designed specifically to help people like you and us manage
data stored in data frames. Therefore, dplyr verbs always receive a data frame as an input
and return a data frame as an output. Specifically, the value passed to the .data argument

346

../speaking_r/speaking_r.qmd
../exporting_data_to_disk/exporting_data_to_disk.qmd
https://dplyr.tidyverse.org/
https://dplyr.tidyverse.org/
../lets_get_programming/lets_get_programming.qmd


must always be a data frame, and you will get an error if you attempt to pass any other data
structure to the .data argument. For example:

# No problem
df <- tibble(
id = c(1, 2, 3),
x = c(0, 1, 0)

)

df %>%
filter(x == 0)

# A tibble: 2 x 2
id x

<dbl> <dbl>
1 1 0
2 3 0

# Problem
l <- list(
id = c(1, 2, 3),
x = c(0, 1, 0)

)

l %>%
filter(x == 0)

Error in UseMethod("filter"): no applicable method for 'filter' applied to an object of class "list"

25.2.3 The … argument

The second value passed to all of the dplyr verbs is the ... argument. If you are new to R,
this probably seems like a really weird argument. And, it kind of is! But, it’s also really useful.
The ... argument (pronounced “dot dot dot”) has special meaning in the R language. This
is true for all functions that use the ... argument – not just dplyr verbs. The ... argument
can be used to pass multiple arguments to a function without knowing exactly what those
arguments will look like ahead of time – including entire expressions. For example:

df %>%
filter(x == 0)

347



# A tibble: 2 x 2
id x

<dbl> <dbl>
1 1 0
2 3 0

Above we passed a data frame to the .data argument of the filter() function. The second
value we passed to the filter() function was x == 1. Think about it, x is an object (i.e. a
column in the data frame), == is a function (remember that operators are functions in R), and
0 is a value. Together, they form an expression (x == 0) that tells R to perform a relatively
complex operation – compare every value of x to the value 0 and tell me if they are the same.
If you are new to programming, this may not seem like any big deal, but it’s really handy to
be able to pass that much information to a single argument of a single function.

If this is all really confusing to you, don’t get too hung up on it right now. The ... argument
is an important component of the R language, but it isn’t important that you fully understand
it in order to use R. If nothing else, just know that that the ... is the second argument to all
the dplyr verbs, and it is generally where you will tell R what you want to do to the columns
of our data frame (i.e., keep them, drop them, create them, sort them, etc.).

25.2.4 Non-standard evaluation

A final little peculiarity about the tidyverse packages – dplyr being one of them – that we
want to discuss in this chapter is something called non-standard evaluation. How non-
standard evaluation works really isn’t that important for us. If we’re being honest, we don’t
even fully understand how it works “under the hood.” But, it is one of the big advantages of
using dplyr, and therefore worth mentioning. Do you remember the section in the Let’s get
programming chapter on common errors? In that section I wrote about how a vector that lives
in the global environment is a different thing to R than a vector that lives as a column in a
data frame in the global environment. So, weight and class$weight are different things, and
if you want to access the weight values in class$weight then you have to make sure and write
the whole thing out. But, have you noticed that we don’t have to do that in dplyr verbs? For
example:

df %>%
filter(df$x == 0)

# A tibble: 2 x 2
id x

<dbl> <dbl>
1 1 0
2 3 0

348

../lets_get_programming/lets_get_programming.qmd
../lets_get_programming/lets_get_programming.qmd


In the example above we wrote out the column name using dollar sign notation. But, we don’t
have to:

df %>%
filter(x == 0)

# A tibble: 2 x 2
id x

<dbl> <dbl>
1 1 0
2 3 0

When we don’t tell a dplyr verb exactly which data frame a column lives in, then the dplyr
verb will assume it lives in the data frame that is passed to the .data argument. This is really
handy for at least two reasons:

• It reduces the amount of typing we have to do when we write our code. �

• It makes it easier to glance at our code and see what it’s doing. Without all the data
frame names and dollar signs strewn about our code, it’s much easier to see what the
code is actually doing.

Overall, non-standard evaluation is a great thing – at least in our opinion. However, it will
present some challenges that we will have to overcome if we plan to use dplyr verbs inside of
functions and loops. Don’t worry, we’ll come back to this topic later in the book.

Now that you (hopefully) have a better general understanding of the dplyr verbs, let’s go take
a look at how to use them for data management.

349



26 Creating and Modifying Columns

Two of the most fundamental data management tasks are to create new columns in your data
frame and to modify existing columns in your data frame. In fact, we’ve already talked about
creating and modifying columns at a few different places in the book.

In this book, we are actually going to learn 4 different methods for creating and modifying
columns of a data frame. They are:

1. Using name-value pairs to add columns to a data frame during its initial creation. This
was one of the first methods we used in this book for creating columns in a data frame.
However, this method does not apply to creating or modifying columns in a data frame
that already exists. Therefore, we won’t discuss it much in this chapter.

2. Dollar sign notation. This is probably the most commonly used base R way of creating
and modifying columns in a data frame. In this book, we won’t use it as much as we use
dplyr::mutate(), but you will see it all over the place in the R community.

3. Bracket notation. Again, we won’t use bracket notation very often in this book. However,
we will use it later on when we learn about for loops. Therefore, we’re going to introduce
you to using bracket notation to create and modify data frame columns now.

4. The mutate() function from the dplyr package. This is the method that we will use
the vast majority of the time in this book (and in our real-life projects). We’re going to
recommend that you do the same.

26.1 Creating data frames

Very early on, in the Let’s get programming chapter, we learned how to create data frame
columns using name-value pairs passed directly into the tibble() function.

class <- tibble(
names = c("John", "Sally", "Brad", "Anne"),
heights = c(68, 63, 71, 72)

)
class

350

../writing_for_loops/writing_for_loops.qmd
../lets_get_programming/lets_get_programming.qmd


# A tibble: 4 x 2
names heights
<chr> <dbl>

1 John 68
2 Sally 63
3 Brad 71
4 Anne 72

This is an absolutely fundamental R programming skill, and one that you will likely use often.
However, most people would not consider this to be a “data management” task, which is the
focus of this part of the book. Further, we’ve really already covered all we need to cover about
creating columns this way. So, we’re not going to write anything further about this method.

26.2 Dollar sign notation

Later in the Let’s get programming chapter, we learned about dollar sign notation. At that
time, we used dollar sign notation to access or “get” values from a column.

class$heights

[1] 68 63 71 72

However, we can also use dollar sign notation to create and/or modify columns in our data
frame. For example:

class$heights <- class$heights / 12
class

# A tibble: 4 x 2
names heights
<chr> <dbl>

1 John 5.67
2 Sally 5.25
3 Brad 5.92
4 Anne 6

�Here’s what we did above:

351

../lets_get_programming/lets_get_programming.qmd


• we modified the values in the heights column of our class data frame using dollar
sign notation. More specifically, we converted the values in the heights column from
inches to feet. We did this by telling R to “get” the values for the heights column and
divide them by 12 (class$heights / 12) and then assign those new values back to the
heights column (class$heights <-). In this case, that has the effect of modifying the
values of a column that already exists.

Note

we would actually suggest that you don’t typically do what we just did above in a real-
world analysis. It’s typically safer to create a new variable with the modified values
(e.g. height_feet) and leave the original values in the original variable as-is.

we can also create a new variable in our data frame in a similar way. All we have to do is
use a valid column name (that doesn’t already exist in the data frame) on the left side of our
assignment arrow. For example:

class$grades <- c(89, 92, 86, 98)
class

# A tibble: 4 x 3
names heights grades
<chr> <dbl> <dbl>

1 John 5.67 89
2 Sally 5.25 92
3 Brad 5.92 86
4 Anne 6 98

�Here’s what we did above:

• we created a new column in our class data frame using dollar sign notation. We assigned
the values 89, 92, 86, and 98 to that column with the assignment arrow.

26.3 Bracket notation

we also learned how to access or “get” values from a column using bracket notation in the Let’s
get programming chapter. There, we actually used a combination of dollar sign and bracket
notation to access single individual values from a data frame column. For example:

352

../lets_get_programming/lets_get_programming.qmd
../lets_get_programming/lets_get_programming.qmd


class$heights[3]

[1] 5.916667

But, we can also use bracket notation to access or “get” the entire column. For example:

class[["heights"]]

[1] 5.666667 5.250000 5.916667 6.000000

�Here’s what we did above:

• we used bracket notation to get all of the values from the heights column of the class
data frame.

we’d like you to notice a couple of things about the example above. First, notice that this is
the exact same result we got from (class$heights). Well, technically, the heights are now in
feet instead of inches, but you know what we mean. R returned a numeric vector containing
the values from the heights column to us. Second, notice that we used double brackets (i.e.,
two brackets on each side of the column name), and that the column name is wrapped in
quotation marks. Both are required to get this result.

Similar to dollar sign notation, we can also create and/or modify columns in our data frame
using bracket notation. For example, let’s convert those heights back to inches using bracket
notation:

class[["heights"]] <- class[["heights"]] * 12
class

# A tibble: 4 x 3
names heights grades
<chr> <dbl> <dbl>

1 John 68 89
2 Sally 63 92
3 Brad 71 86
4 Anne 72 98

And, let’s go ahead and add one more variable to our data frame using bracket notation.

353



class[["rank"]] <- c(3, 2, 4, 1)
class

# A tibble: 4 x 4
names heights grades rank
<chr> <dbl> <dbl> <dbl>

1 John 68 89 3
2 Sally 63 92 2
3 Brad 71 86 4
4 Anne 72 98 1

Somewhat confusingly, we can also access, create, and modify data frame columns using single
brackets. For example:

class["heights"]

# A tibble: 4 x 1
heights

<dbl>
1 68
2 63
3 71
4 72

Notice, however, that this returns a different result than class$heights and class[["heights]].
The results returned from class$heights and class[["heights]] were numeric vectors
with 4 elements. The result returned from class["heights"] was a data frame with 1
column and 4 rows.

we don’t want you to get too hung up on the difference between single and double brackets
right now. As we said, we are primarily going to use mutate() to create and modify data
frame columns in this book. For now, it’s enough for you to simply be aware that single
brackets and double brackets are a thing, and they can sometimes return different results. We
will make sure to point out whether or not that matters when we use bracket notation later
in the book.

26.4 Modify individual values

Before moving on to the mutate() function, we wanted to quickly discuss using dollar sign and
bracket notation for modifying individual values in a column. Recall that we already learned
how to access individual column values in the Let’s get programming chapter.

354

../lets_get_programming/lets_get_programming.qmd


class$heights[3]

[1] 71

As you may have guessed, we can also get the result above using only bracket notation.

class[["heights"]][3]

[1] 71

Not only can we use these methods to get individual values from a column in a data frame, but
we can also use these methods to modify an individual value in a column of a data frame. When
might we want to do this? Well, we generally do this in one of two different circumstances.

• First, we may do this when we’re writing our own R functions (you’ll learn how to do
this later) and we want to make sure the function still behaves in the way we intended
when there are small changes to the data. So, we may add a missing value to a column
or something like that.

• The second circumstance is when there are little one-off typos in the data. For example,
let’s say we imported a data frame that looked like this:

study_data <- tibble(
id = c(1, 2, 3, 4),
site = c("TX", "CA", "tx", "CA")

)

study_data

# A tibble: 4 x 2
id site

<dbl> <chr>
1 1 TX
2 2 CA
3 3 tx
4 4 CA

Notice that tx in the third row of data isn’t capitalized. Remember, R is a case-sensitive
language, so this will likely cause us problems down the road if we don’t fix it. The easiest
way to do so is probably:

355



study_data$site[3] <- "TX"
study_data

# A tibble: 4 x 2
id site

<dbl> <chr>
1 1 TX
2 2 CA
3 3 TX
4 4 CA

Keep in mind that we said that we fix little one-off typos. If we needed to change tx to TX in
multiple different places in the data, we wouldn’t use this method. Instead, we would use a
conditional operation, which we will discuss later in the book.

26.5 The mutate() function

# Load dplyr for the mutate function
library(dplyr)

we first discussed mutate() in Chapter 17, and again in Chapter 25. As we said there, the
first two arguments to mutate() are .data and ....

The value passed to .data should always be a data frame. In this book, we will often pass
data frames to the .data argument using the pipe operator (e.g., df %>% mutate()).

The value passed to the ... argument should be a name-value pair or multiple name value
pairs separated by commas. The ... argument is where you will tell mutate() to create or
modify columns in your data frame and how.

• Name-value pairs look like this: column name = value. The only thing that distin-
guishes whether you are creating or modifying a column is the column name in the
name-value pair. If the column name in the name-value pair matches the name of an
existing column in the data frame, then mutate() will modify that existing column. If
the column name in the name-value pair does NOT match the name of an existing col-
umn in the data frame, then mutate() will create a new column in the data frame with
a matching column name.

356

../conditional_operations/conditional_operations.qmd


Let’s take a look at a couple of examples. To get us started, let’s simulate some data that is
a little more interesting than the class data we used above.

set.seed(123)

drug_trial <- tibble(
# Study id, there are 20 people enrolled in the trial.
id = rep(1:20, each = 3),
# Follow-up year, 0 = baseline, 1 = year one, 2 = year two.
year = rep(0:2, times = 20),
# Participant age a baseline. Must be between the ages of 35 and 75 at
# baseline to be eligible for the study
age = sample(35:75, 20, TRUE) %>% rep(each = 3),
# Drug the participant received, Placebo or active
drug = sample(c("Placebo", "Active"), 20, TRUE) %>%

rep(each = 3),
# Reported headaches side effect, Y/N
se_headache = if_else(

drug == "Placebo",
sample(0:1, 60, TRUE, c(.95,.05)),
sample(0:1, 60, TRUE, c(.10, .90))

),
# Report diarrhea side effect, Y/N
se_diarrhea = if_else(

drug == "Placebo",
sample(0:1, 60, TRUE, c(.98,.02)),
sample(0:1, 60, TRUE, c(.20, .80))

),
# Report dry mouth side effect, Y/N
se_dry_mouth = if_else(

drug == "Placebo",
sample(0:1, 60, TRUE, c(.97,.03)),
sample(0:1, 60, TRUE, c(.30, .70))

),
# Participant had myocardial infarction in study year, Y/N
mi = if_else(

drug == "Placebo",
sample(0:1, 60, TRUE, c(.85, .15)),
sample(0:1, 60, TRUE, c(.80, .20))

)
)

�Here’s what we did above:

357



• we are simulating some drug trial data that includes the following variables:

– id: Study id, there are 20 people enrolled in the trial.

– year: Follow-up year, 0 = baseline, 1 = year one, 2 = year two.

– age: Participant age a baseline. Must be between the ages of 35 and 75 at baseline
to be eligible for the study.

– drug: Drug the participant received, Placebo or active.

– se_headache: Reported headaches side effect, Y/N.

– se_diarrhea: Report diarrhea side effect, Y/N.

– se_dry_mouth: Report dry mouth side effect, Y/N.

– mi: Participant had myocardial infarction in study year, Y/N.

• we used the tibble() function above to create our data frame instead of the
data.frame() function. This allows us to pass the drug column as a value to the
if_else() function when we create se_headache, se_diarrhea, se_dry_mouth, and
mi. If we had used data.frame() instead, we would have had to create se_headache,
se_diarrhea, se_dry_mouth, and mi in a separate step.

• we used a new function, if_else(), above to help us simulate this data. This function
allows us to do something called conditional operations. There will be an entire
chapter on conditional operations later in the book.

• we used a new function, sample(), above to help us simulate this data. We used this func-
tion to randomly assign values to age, drug, se_headache, se_diarrhea, se_dry_mouth,
and mi instead of manually assigning each value ourselves.

– You can type ?sample into your R console to view the help documentation for this
function and follow along with the explanation below.

– The first argument to the sample() function is the x argument. You should pass
a vector of values you want R to randomly choose from. For example, we told R
to select values from a vector of numbers that spanned between 35 and 75 to fill-in
the age column. Alternatively, we told R to select values from a character vector
that included the values “Placebo” and “Active” to fill-in the drug column.

– The second argument to the sample() function is the size argument. You should
pass a number to the size argument. That number tells R how many times to choose
a value from the vector of possible values passed to the x argument.

358

../conditional_operations/conditional_operations.qmd


– The third argument to the sample() function is the replace argument. The default
value passed to the replace argument is FALSE. This tells R that once it has chosen
a value from the vector of possible values passed to the x argument, it can’t choose
that value again. If you want R to be able to choose the same value more than
once, then you have to pass the value TRUE to the replace argument.

– The fourth argument to the sample() function is the prob argument. The default
value passed to the prob argument is NULL. This just means that this argument is
optional. Passing a vector of probabilities to this argument allows you to adjust
how likely it is that R will choose certain values from the vector of possible values
passed to the x argument.

– Finally, notice that we also used the set.seed() function at the very top of the
code chunk. We did this because, the sample() function chooses values at random.
That means, every time we run the code above, we get different values. That makes
it difficult for me to write about the data because it’s constantly changing. When
we use the set.seed() function, the values will still be randomly selected, but
they will be the same randomly selected values every time. It doesn’t matter what
numbers you pass to the set.seed() function as long as you pass the same numbers
every time you want to get the same random values. For example:

# No set.seed - Random values
sample(1:100, 10, TRUE)

[1] 5 29 50 70 74 26 73 11 6 96

# No set.seed - Different random values
sample(1:100, 10, TRUE)

[1] 76 83 91 56 96 27 94 68 88 28

# Use set.seed - Random values
set.seed(456)
sample(1:100, 10, TRUE)

[1] 35 38 85 27 25 78 31 73 79 90

# Use set.seed again - Same random values
set.seed(456)
sample(1:100, 10, TRUE)

359



[1] 35 38 85 27 25 78 31 73 79 90

# Use set.seed with different value - Different random values
set.seed(789)
sample(1:100, 10, TRUE)

[1] 45 12 42 26 99 37 100 43 67 70

• It’s not important that you fully understand the sample() function at this point. We’re
just including it for those of you who are interested in simulating some slightly more
complex data than we have simulated so far. The rest of you can just copy and paste
the code if you want to follow along.

26.5.1 Adding or modifying a single column

This is probably the simplest case of adding a new column. We are going to use mutate() to
add a single new column to the drug_trial data frame. Let’s say we want to add a column
called complete that is equal to 1 if the participant showed up for all follow-up visits and
equal to 0 if they didn’t. In this case, we simulated our data in such a way that we have
complete follow-up for every participant. So, the value for complete should be 0 in all 60 rows
of the data frame. We can do this in a few different ways.

drug_trial %>%
mutate(complete = c(

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

)

# A tibble: 60 x 9
id year age drug se_headache se_diarrhea se_dry_mouth mi complete

<int> <int> <int> <chr> <int> <int> <int> <int> <dbl>
1 1 0 65 Active 0 1 1 0 0
2 1 1 65 Active 1 1 1 0 0
3 1 2 65 Active 1 1 0 0 0
4 2 0 49 Active 1 1 1 0 0
5 2 1 49 Active 0 0 1 0 0
6 2 2 49 Active 1 1 1 0 0
7 3 0 48 Placebo 0 0 0 0 0
8 3 1 48 Placebo 0 0 0 0 0
9 3 2 48 Placebo 0 0 0 0 0

360



10 4 0 37 Placebo 0 0 0 0 0
# i 50 more rows

So, that works, but typing that out is no fun. Not to mention, this isn’t scalable at all. What
if we needed 1,000 zeros? There’s actually a much easier way to get the result above, which
may surprise you. Take a look �:

drug_trial %>%
mutate(complete = 0)

# A tibble: 60 x 9
id year age drug se_headache se_diarrhea se_dry_mouth mi complete

<int> <int> <int> <chr> <int> <int> <int> <int> <dbl>
1 1 0 65 Active 0 1 1 0 0
2 1 1 65 Active 1 1 1 0 0
3 1 2 65 Active 1 1 0 0 0
4 2 0 49 Active 1 1 1 0 0
5 2 1 49 Active 0 0 1 0 0
6 2 2 49 Active 1 1 1 0 0
7 3 0 48 Placebo 0 0 0 0 0
8 3 1 48 Placebo 0 0 0 0 0
9 3 2 48 Placebo 0 0 0 0 0
10 4 0 37 Placebo 0 0 0 0 0
# i 50 more rows

How easy is that? Just pass the value to the name-value pair once and R will use it in every
row. This works because of something called the recycling rules � . In a nutshell, this means
that R will change the length of vectors in certain situations all by itself when it thinks it
knows what you “meant.” So, above we passed gave R a length 1 vector 0 (i.e. a numeric
vector with one value in it), and R changed it to a length 60 vector behind the scenes so that
it could complete the operation it thought you were trying to complete.

26.5.2 Recycling rules

� The recycling rules work as long as the length of the longer vector is an integer multiple of
the length of the shorter vector. For example, every vector (column) in R data frames must
have the same length. In this case, 60. The length of the value we used in the name-value pair
above was 1 (i.e., a single 0). Therefore, the longer vector had a length of 60 and the shorter
vector had a length of 1. Because 60 * 1 = But, what if we had tried to pass the values 0 and
1 to the column instead of just zero?

361



drug_trial %>%
mutate(complete = c(0, 1))

Error in `mutate()`:
i In argument: `complete = c(0, 1)`.
Caused by error:
! `complete` must be size 60 or 1, not 2.

This doesn’t work, but it actually isn’t for the reason you may be thinking. Because 30 * 2 =
60, the length of the longer vector (60) is an integer multiple (30) of the length of the shorter
vector (2). However, tidyverse functions throw errors when you try to recycle anything other
than a single number. They are designed this way to protect you from accidentally getting
unexpected results. So, we’re going to switch back over to using base R to round out our
discussion of the recycling rules. Let’s try our example above again using base R:

drug_trial$complete <- c(0,1)

Error in `$<-`:
! Assigned data `c(0, 1)` must be compatible with existing data.
x Existing data has 60 rows.
x Assigned data has 2 rows.
i Only vectors of size 1 are recycled.
Caused by error in `vectbl_recycle_rhs_rows()`:
! Can't recycle input of size 2 to size 60.

drug_trial

# A tibble: 60 x 8
id year age drug se_headache se_diarrhea se_dry_mouth mi

<int> <int> <int> <chr> <int> <int> <int> <int>
1 1 0 65 Active 0 1 1 0
2 1 1 65 Active 1 1 1 0
3 1 2 65 Active 1 1 0 0
4 2 0 49 Active 1 1 1 0
5 2 1 49 Active 0 0 1 0
6 2 2 49 Active 1 1 1 0
7 3 0 48 Placebo 0 0 0 0
8 3 1 48 Placebo 0 0 0 0
9 3 2 48 Placebo 0 0 0 0
10 4 0 37 Placebo 0 0 0 0
# i 50 more rows

362



Wait, why are we still getting an error? Well, take a look at the output below and see if you
can figure it out.

class(drug_trial)

[1] "tbl_df" "tbl" "data.frame"

It may not be totally obvious, but this is telling us that drug_trial is a tibble – an enhanced
data frame. Remember, we created drug_trial using the tibble() function instead of the
tibble() function. Because tibbles are part of the tidyverse they throw the same recycling
errors that the mutate() function did above. So, we’ll need to create a non-tibble version of
drug_trial to finish our discussion of recycling rules.

drug_trial_df <- as.data.frame(drug_trial)
class(drug_trial_df)

[1] "data.frame"

There we go! A regular old data frame.

drug_trial_df$complete <- c(0,1)
drug_trial_df

id year age drug se_headache se_diarrhea se_dry_mouth mi complete
1 1 0 65 Active 0 1 1 0 0
2 1 1 65 Active 1 1 1 0 1
3 1 2 65 Active 1 1 0 0 0
4 2 0 49 Active 1 1 1 0 1
5 2 1 49 Active 0 0 1 0 0
6 2 2 49 Active 1 1 1 0 1
7 3 0 48 Placebo 0 0 0 0 0
8 3 1 48 Placebo 0 0 0 0 1
9 3 2 48 Placebo 0 0 0 0 0
10 4 0 37 Placebo 0 0 0 0 1
11 4 1 37 Placebo 0 0 0 0 0
12 4 2 37 Placebo 0 0 0 1 1
13 5 0 71 Placebo 0 0 0 0 0
14 5 1 71 Placebo 0 0 0 0 1
15 5 2 71 Placebo 0 0 0 0 0
16 6 0 48 Placebo 0 0 0 0 1

363



17 6 1 48 Placebo 0 0 0 1 0
18 6 2 48 Placebo 0 0 0 1 1
19 7 0 59 Active 1 1 1 0 0
20 7 1 59 Active 1 1 0 0 1
21 7 2 59 Active 1 1 1 0 0
22 8 0 60 Placebo 0 0 0 0 1
23 8 1 60 Placebo 0 0 0 0 0
24 8 2 60 Placebo 0 0 0 0 1
25 9 0 61 Active 1 1 1 0 0
26 9 1 61 Active 0 1 1 0 1
27 9 2 61 Active 1 0 0 0 0
28 10 0 39 Active 1 0 1 0 1
29 10 1 39 Active 1 0 0 0 0
30 10 2 39 Active 1 1 1 0 1
31 11 0 61 Placebo 0 0 0 0 0
32 11 1 61 Placebo 0 0 0 1 1
33 11 2 61 Placebo 0 0 0 0 0
34 12 0 62 Placebo 1 0 1 0 1
35 12 1 62 Placebo 0 0 0 0 0
36 12 2 62 Placebo 0 0 0 0 1
37 13 0 43 Placebo 0 0 0 0 0
38 13 1 43 Placebo 0 0 0 0 1
39 13 2 43 Placebo 0 0 0 0 0
40 14 0 63 Placebo 0 0 0 0 1
41 14 1 63 Placebo 0 0 0 0 0
42 14 2 63 Placebo 0 0 0 0 1
43 15 0 69 Active 1 1 1 0 0
44 15 1 69 Active 1 0 1 0 1
45 15 2 69 Active 1 1 1 0 0
46 16 0 42 Placebo 0 0 0 0 1
47 16 1 42 Placebo 0 0 1 0 0
48 16 2 42 Placebo 0 0 0 1 1
49 17 0 60 Placebo 0 0 0 0 0
50 17 1 60 Placebo 0 0 0 0 1
51 17 2 60 Placebo 1 0 0 0 0
52 18 0 41 Active 1 1 1 0 1
53 18 1 41 Active 1 1 1 0 0
54 18 2 41 Active 1 1 0 1 1
55 19 0 43 Placebo 0 0 0 0 0
56 19 1 43 Placebo 0 0 0 0 1
57 19 2 43 Placebo 0 0 0 0 0
58 20 0 53 Placebo 0 0 0 0 1
59 20 1 53 Placebo 0 0 0 0 0

364



60 20 2 53 Placebo 0 0 0 0 1

As you can see, the values 0 and 1 are now recycled as expected. Because 30 * 2 = 60, the
length of the longer vector (60) is an integer multiple (30) of the length of the shorter vector
(2). Now, what happens in a situation where the length of the longer vector is not an integer
multiple of the length of the shorter vector.

drug_trial_df$complete <- c(0, 1, 2, 3, 4, 5, 6) # 7 values

Error in `$<-.data.frame`(`*tmp*`, complete, value = c(0, 1, 2, 3, 4, : replacement has 7 rows, data has 60

60 / 7 = 8.571429 – not an integer. Because there is no integer value that we can multiply by
7 to get the number 60, R throws us an error telling us that it isn’t able to use the recycling
rules.

Finally, the recycling rules don’t only apply to creating new data frame columns. It applies
in all cases where R is using two vectors to perform an operation. For example, R uses the
recycling rules in mathematical operations.

nums <- 1:10
nums

[1] 1 2 3 4 5 6 7 8 9 10

To demonstrate, we create a simple numeric vector above. This vector just contains the
numbers 1 through 10. Now, we can add 1 to each of those numbers like so:

nums + 1

[1] 2 3 4 5 6 7 8 9 10 11

Notice how R used the recycling rules to add 1 to every number in the nums vector. We
didn’t have to explicitly tell R to add 1 to each number. This is sometimes referred to as
vectorization. Functions that perform an action on all elements of a vector, rather than
having to be explicitly programmed to perform an action on each element of a vector, is a
vectorized function. Remember, that mathematical operators – including + – are functions
in R. More specifically, + is a vectorized function. In fact, most built-in R functions are
vectorized. Why are we telling you this? It isn’t intended to confuse you, but when I was
learning R I came across this term all the time in R resources and help pages, and I had no
idea what it meant. We hope that this very simple example above makes it easy to understand

365



what vectorization means, and you won’t be intimidated when it pops up while you’re trying
to get help with your R programs.

Ok, so what happens when we add a longer vector and a shorter vector?

nums + c(1, 2)

[1] 2 4 4 6 6 8 8 10 10 12

As expected, R uses the recycling rules to change the length of the short vector to match the
length of the longer vector, and then performs the operation – in this case, addition. So, the
net result is 1 + 1 = 2, 2 + 2 = 4, 3 + 1 = 4, 4 + 2 = 6, etc. You probably already guessed
what’s going to happen if we try to add a length 3 vector to nums, but let’s go ahead and take
a look for the sake of completeness:

nums + c(1, 2, 3)

Warning in nums + c(1, 2, 3): longer object length is not a multiple of shorter
object length

[1] 2 4 6 5 7 9 8 10 12 11

Yep, we get an error. 10 / 3 = 3.333333 – not an integer. Because there is no integer value
that we can multiply by 3 to get the number 10, R throws us an error telling us that it isn’t
able to use the recycling rules.

Now that you understand R’s recycling rules, let’s return to our motivating example.

drug_trial %>%
mutate(complete = 0)

# A tibble: 60 x 9
id year age drug se_headache se_diarrhea se_dry_mouth mi complete

<int> <int> <int> <chr> <int> <int> <int> <int> <dbl>
1 1 0 65 Active 0 1 1 0 0
2 1 1 65 Active 1 1 1 0 0
3 1 2 65 Active 1 1 0 0 0
4 2 0 49 Active 1 1 1 0 0
5 2 1 49 Active 0 0 1 0 0
6 2 2 49 Active 1 1 1 0 0
7 3 0 48 Placebo 0 0 0 0 0

366



8 3 1 48 Placebo 0 0 0 0 0
9 3 2 48 Placebo 0 0 0 0 0
10 4 0 37 Placebo 0 0 0 0 0
# i 50 more rows

This method works, but not always. And, it can sometimes give us intended results. You may
have originally thought to yourself, “we’ve already learned the rep() function. Let’s use that.”
In fact, that’s a great idea!

drug_trial %>%
mutate(complete = rep(0, 60))

# A tibble: 60 x 9
id year age drug se_headache se_diarrhea se_dry_mouth mi complete

<int> <int> <int> <chr> <int> <int> <int> <int> <dbl>
1 1 0 65 Active 0 1 1 0 0
2 1 1 65 Active 1 1 1 0 0
3 1 2 65 Active 1 1 0 0 0
4 2 0 49 Active 1 1 1 0 0
5 2 1 49 Active 0 0 1 0 0
6 2 2 49 Active 1 1 1 0 0
7 3 0 48 Placebo 0 0 0 0 0
8 3 1 48 Placebo 0 0 0 0 0
9 3 2 48 Placebo 0 0 0 0 0
10 4 0 37 Placebo 0 0 0 0 0
# i 50 more rows

That’s a lot less typing than the first method we tried, and it also has the added benefit of
providing code that is easier for humans to read. We can both look at the code we used in
the first method and tell that there are a bunch of zeros, but it’s hard to guess exactly how
many, and it’s hard to feel completely confident that there isn’t a 1 in there somewhere that
our eyes are missing. By contrast, it’s easy to look at rep(0, 60) and know that there are
exactly 60 zeros, and only 60 zeros.

26.5.3 Using existing variables in name-value pairs

In the example above, we create a new column called complete by directly supplying values
for that column in the name-value pair. In our experience, it is probably more common to
create new columns in our data frames by combining or transforming the values of columns
that already exist in our data frame. You’ve already seen an example of doing so when we

367

../lets_get_programming/lets_get_programming.qmd
../lets_get_programming/lets_get_programming.qmd


created factor versions of variables. As an additional example, we could create a factor version
of our mi variable like this:

drug_trial %>%
mutate(mi_f = factor(mi, c(0, 1), c("No", "Yes")))

# A tibble: 60 x 9
id year age drug se_headache se_diarrhea se_dry_mouth mi mi_f

<int> <int> <int> <chr> <int> <int> <int> <int> <fct>
1 1 0 65 Active 0 1 1 0 No
2 1 1 65 Active 1 1 1 0 No
3 1 2 65 Active 1 1 0 0 No
4 2 0 49 Active 1 1 1 0 No
5 2 1 49 Active 0 0 1 0 No
6 2 2 49 Active 1 1 1 0 No
7 3 0 48 Placebo 0 0 0 0 No
8 3 1 48 Placebo 0 0 0 0 No
9 3 2 48 Placebo 0 0 0 0 No
10 4 0 37 Placebo 0 0 0 0 No
# i 50 more rows

Notice that in the code above, we didn’t tell R what values to use for mi_f by typing them
explicitly in the name-value pair. Instead, we told R to go get the values of the column mi,
do some stuff to those values, and then assign those modified values to a column in the data
frame and name that column mi_f.

Here’s another example. It’s common to mean-center numeric values for many different kinds
of analyses. For example, this is often done in regression analysis to aid in the interpretation
of regression coefficients. We can easily mean-center numeric variables inside our mutate()
function like so:

drug_trial %>%
mutate(age_center = age - mean(age))

# A tibble: 60 x 9
id year age drug se_headache se_diarrhea se_dry_mouth mi age_center

<int> <int> <int> <chr> <int> <int> <int> <int> <dbl>
1 1 0 65 Acti~ 0 1 1 0 11.3
2 1 1 65 Acti~ 1 1 1 0 11.3
3 1 2 65 Acti~ 1 1 0 0 11.3
4 2 0 49 Acti~ 1 1 1 0 -4.7
5 2 1 49 Acti~ 0 0 1 0 -4.7

368

../lets_get_programming/lets_get_programming.qmd


6 2 2 49 Acti~ 1 1 1 0 -4.7
7 3 0 48 Plac~ 0 0 0 0 -5.7
8 3 1 48 Plac~ 0 0 0 0 -5.7
9 3 2 48 Plac~ 0 0 0 0 -5.7
10 4 0 37 Plac~ 0 0 0 0 -16.7
# i 50 more rows

Notice how succinctly we were able to express this fairly complicated task. We had to figure
out the find the mean of the variable age in the drug_trial data frame, subtract that value
from the value for age in each row of the data frame, and then create a new column in the data
frame containing the mean-centered values. Because of the fact that mutate()’s name-value
pairs can accept complex expressions a value, and because all of the functions used in the code
above are vectorized, we can perform this task using only a single, easy-to-read line of code
(age_center = age - mean(age)).

26.5.4 Adding or modifying multiple columns

In all of the examples above, we passed a single name-value pair to the ... argument of the
mutate() function. If we want to create or modify multiple columns, we don’t need to keep
typing the mutate() function over and over. We can simply pass multiple name-value pairs,
separated by columns, to the ... argument. And, there is no limit to the number of pairs
we can pass. This is part of the beauty of the ... argument in R. For example, we have
three variables in drug_trial that capture information about whether or not the participant
reported side effects including headache, diarrhea, and dry mouth. Currently, those are all
stored as integer vectors that can take the values 0 and 1. Let’s say that we want to also
create factor versions of those vectors:

drug_trial %>%
mutate(

se_headache_f = factor(se_headache, c(0, 1), c("No", "Yes")),
se_diarrhea_f = factor(se_diarrhea, c(0, 1), c("N0", "Yes")),
se_dry_mouth_f = factor(se_dry_mouth, c(0, 1), c("No", "Yes"))

)

# A tibble: 60 x 11
id year age drug se_headache se_diarrhea se_dry_mouth mi

<int> <int> <int> <chr> <int> <int> <int> <int>
1 1 0 65 Active 0 1 1 0
2 1 1 65 Active 1 1 1 0
3 1 2 65 Active 1 1 0 0
4 2 0 49 Active 1 1 1 0

369



5 2 1 49 Active 0 0 1 0
6 2 2 49 Active 1 1 1 0
7 3 0 48 Placebo 0 0 0 0
8 3 1 48 Placebo 0 0 0 0
9 3 2 48 Placebo 0 0 0 0
10 4 0 37 Placebo 0 0 0 0
# i 50 more rows
# i 3 more variables: se_headache_f <fct>, se_diarrhea_f <fct>,
# se_dry_mouth_f <fct>

�Here’s what we did above:

• we created three new factor columns in the drug_trial data called se_headache_f,
se_diarrhea_f, and se_dry_mouth_f.

• we created all columns inside a single mutate() function.

• Notice that we created one variable per line. We suggest you do the same. It just makes
your code much easier to read.

So, adding or modifying multiple columns is really easy with mutate(). But, did any of
you notice an error? Take a look at the structure of the data the line of code that creates
se_diarrhea_f. Instead of writing the “No” label with an “N” and an “o”, we accidently
wrote it with an “N” and a zero. We find that when we have to type something over and over
like this, we are more likely to make a mistake. Further, if we ever need to change the levels
or labels, we will have to change them in every factor() function in the code above.

For these reasons (and others), programmers of many languages – including R – are taught
the DRY principle. DRY is an acronym for don’t repeat yourself. We will discuss the DRY
principle again in Chapter 33, but for now, it just means that you typically don’t want to type
code that is the same (or nearly the same) over and over in your programs. Here’s one way
we could reduce the repetition in the code above:

# Create a vector of 0/1 levels that can be reused below.
yn_levs <- c(0, 1)
# Create a vector of "No"/"Yes" labels that can be reused below.
yn_labs <- c("No", "Yes")

drug_trial %>%
mutate(

se_headache_f = factor(se_headache, yn_levs, yn_labs),
se_diarrhea_f = factor(se_diarrhea, yn_levs, yn_labs),
se_dry_mouth_f = factor(se_dry_mouth, yn_levs, yn_labs)

)

370

https://en.wikipedia.org/wiki/Don%27t_repeat_yourself


# A tibble: 60 x 11
id year age drug se_headache se_diarrhea se_dry_mouth mi

<int> <int> <int> <chr> <int> <int> <int> <int>
1 1 0 65 Active 0 1 1 0
2 1 1 65 Active 1 1 1 0
3 1 2 65 Active 1 1 0 0
4 2 0 49 Active 1 1 1 0
5 2 1 49 Active 0 0 1 0
6 2 2 49 Active 1 1 1 0
7 3 0 48 Placebo 0 0 0 0
8 3 1 48 Placebo 0 0 0 0
9 3 2 48 Placebo 0 0 0 0
10 4 0 37 Placebo 0 0 0 0
# i 50 more rows
# i 3 more variables: se_headache_f <fct>, se_diarrhea_f <fct>,
# se_dry_mouth_f <fct>

Notice that in the code above we type c(0, 1) and c("No", "Yes") once each instead of 3
times each. In the chapter on repeated operations we will learn techniques for removing even
more repetition from the code above.

26.5.5 Rowwise mutations

In all the examples above we used the values from a single already existing variable in our
name-value pair. However, we can also use the values from multiple variables in our name-value
pairs.

For example, we have three variables in our drug_trial data that capture information about
whether or not the participant reported side effects including headache, diarrhea, and dry
mouth (sounds like every drug commercial that exists �). What if we want to know if our
participants reported any side effect at each follow-up? That requires us to combine and
transform data from across three different columns! This is one of those situations where
there are many different ways we could accomplish this task, but we’re going to use dplyr’s
rowwise() function to do so in the following code:

drug_trial %>%
rowwise() %>%
mutate(any_se_year = sum(se_headache, se_diarrhea, se_dry_mouth) > 0)

# A tibble: 60 x 9
# Rowwise:

371

../intro_repeated_operations/intro_repeated_operations.qmd


id year age drug se_headache se_diarrhea se_dry_mouth mi
<int> <int> <int> <chr> <int> <int> <int> <int>

1 1 0 65 Active 0 1 1 0
2 1 1 65 Active 1 1 1 0
3 1 2 65 Active 1 1 0 0
4 2 0 49 Active 1 1 1 0
5 2 1 49 Active 0 0 1 0
6 2 2 49 Active 1 1 1 0
7 3 0 48 Placebo 0 0 0 0
8 3 1 48 Placebo 0 0 0 0
9 3 2 48 Placebo 0 0 0 0
10 4 0 37 Placebo 0 0 0 0
# i 50 more rows
# i 1 more variable: any_se_year <lgl>

�Here’s what we did above:

• we created a new column in the drug_trial data called any_se_year using the mutate()
function.

• we used the rowwise() function to tell R to group the data frame by rows. Said another
way rowwise() tells R to do any calculations that follow across columns instead within
columns. Don’t worry, there are more examples below.

• The value we passed to the name-value pair inside mutate() was actually the result of
two calculations.

– First, R summed the values of se_headache, se_diarrhea, and se_dry_mouth (i.e.,
sum(se_headache, se_diarrhea, se_dry_mouth)).

– Next, R compared that the summed value to 0. If the summed value was greater
than 0, then the value assigned to any_se_year was TRUE. Otherwise, the value
assigned to any_se_year was FALSE.

Because there is some new stuff in the code above, I’m going break it down a little bit further.
We’ll start with rowwise(). And, to reduce distractions a much as possible, I’m going to
create a new data frame with only the columns we need for this example (sneak peek at the
next chapter):

drug_trial_sub <- drug_trial %>%
select(id, year, starts_with("se")) %>%
print()

372



# A tibble: 60 x 5
id year se_headache se_diarrhea se_dry_mouth

<int> <int> <int> <int> <int>
1 1 0 0 1 1
2 1 1 1 1 1
3 1 2 1 1 0
4 2 0 1 1 1
5 2 1 0 0 1
6 2 2 1 1 1
7 3 0 0 0 0
8 3 1 0 0 0
9 3 2 0 0 0
10 4 0 0 0 0
# i 50 more rows

Let’s start by discussing what rowwise() does. As we discussed above, most built-in R
functions are vectorized. They do things to entire vectors, and data frame columns are vectors.
So, without using rowwise() the sum() function would have returned the value 54:

drug_trial_sub %>%
mutate(any_se_year = sum(se_headache, se_diarrhea, se_dry_mouth))

# A tibble: 60 x 6
id year se_headache se_diarrhea se_dry_mouth any_se_year

<int> <int> <int> <int> <int> <int>
1 1 0 0 1 1 54
2 1 1 1 1 1 54
3 1 2 1 1 0 54
4 2 0 1 1 1 54
5 2 1 0 0 1 54
6 2 2 1 1 1 54
7 3 0 0 0 0 54
8 3 1 0 0 0 54
9 3 2 0 0 0 54
10 4 0 0 0 0 54
# i 50 more rows

Any guesses why it returns 54? Here’s a hint:

sum(c(0, 1, 0))

373



[1] 1

sum(c(1, 1, 0))

[1] 2

sum(
c(0, 1, 0),
c(1, 1, 0)

)

[1] 3

When we pass a single numeric vector to the sum() function, it adds together all the num-
bers in that function. When we pass two or more numeric vectors to the sum() function, it
adds together all the numbers in all the vectors combined. Our data frame columns are no
different:

sum(drug_trial_sub$se_headache)

[1] 20

sum(drug_trial_sub$se_diarrhea)

[1] 16

sum(drug_trial_sub$se_dry_mouth)

[1] 18

sum(
drug_trial_sub$se_headache,
drug_trial_sub$se_diarrhea,
drug_trial_sub$se_dry_mouth

)

[1] 54

374



Hopefully, you see that the sum() function is taking the total of all three vectors added together,
which is a single number (54), and then using recycling rules to assign that value to every row
of any_se_year.

Using rowwise() tells R to add across the columns instead of within the columns. So, add
the first value for se_headache to the first value for se_diarrhea to the first value for
se_dry_mouth, assign that value to the first value of any_se_year, and then repeat for each
subsequent row. This is what that result looks like:

drug_trial_sub %>%
rowwise() %>%
mutate(any_se_year = sum(se_headache, se_diarrhea, se_dry_mouth))

# A tibble: 60 x 6
# Rowwise:

id year se_headache se_diarrhea se_dry_mouth any_se_year
<int> <int> <int> <int> <int> <int>

1 1 0 0 1 1 2
2 1 1 1 1 1 3
3 1 2 1 1 0 2
4 2 0 1 1 1 3
5 2 1 0 0 1 1
6 2 2 1 1 1 3
7 3 0 0 0 0 0
8 3 1 0 0 0 0
9 3 2 0 0 0 0
10 4 0 0 0 0 0
# i 50 more rows

Because the value for each side effect could only be 0 (if not reported) or 1 (if reported) then
the rowwise sum of those numbers is a count of the number of side effects reported in each row.
For example, person 1 reported not having headaches (0), having diarrhea (1), and having
dry mouth (1) at baseline (year == 0). And, 0 + 1 + 1 = 2 – the same value you see for
any_se_year in that row. For instructional purposes, let’s run the code above again, but
change the name of the variable to n_se_year (i.e., the count of side effects a participant
reported in a given year).

This may be a useful result in and of itself. However, we said we wanted a variable that
captured whether a participant reported any side effect at each follow-up. Well, because
any_se_year is currently a count of side effects reported for that participant in that year,
then where the value of any_se_year is 0 no side effects were reported. If the current value
of any_se_year is greater than 0, then one or more side effects were reported. Generally, we
can test inequalities like this in the following way:

375



# Is 0 greater than 0?
0 > 0

[1] FALSE

# Is 2 greater than 0?
2 > 0

[1] TRUE

In our specific situation, instead of using a number on the left side of the inequality, we can
use our calculated n_se_year variable values on the left side of the inequality:

drug_trial_sub %>%
rowwise() %>%
mutate(

n_se_year = sum(se_headache, se_diarrhea, se_dry_mouth),
any_se_year = n_se_year > 0

)

# A tibble: 60 x 7
# Rowwise:

id year se_headache se_diarrhea se_dry_mouth n_se_year any_se_year
<int> <int> <int> <int> <int> <int> <lgl>

1 1 0 0 1 1 2 TRUE
2 1 1 1 1 1 3 TRUE
3 1 2 1 1 0 2 TRUE
4 2 0 1 1 1 3 TRUE
5 2 1 0 0 1 1 TRUE
6 2 2 1 1 1 3 TRUE
7 3 0 0 0 0 0 FALSE
8 3 1 0 0 0 0 FALSE
9 3 2 0 0 0 0 FALSE
10 4 0 0 0 0 0 FALSE
# i 50 more rows

In this way, any_se_year is TRUE if the participant reported any side effect in that year and
false if they reported no side effects in that year. We could write the code more succinctly like
this:

376



drug_trial_sub %>%
rowwise() %>%
mutate(any_se_year = sum(se_headache, se_diarrhea, se_dry_mouth) > 0)

# A tibble: 60 x 6
# Rowwise:

id year se_headache se_diarrhea se_dry_mouth any_se_year
<int> <int> <int> <int> <int> <lgl>

1 1 0 0 1 1 TRUE
2 1 1 1 1 1 TRUE
3 1 2 1 1 0 TRUE
4 2 0 1 1 1 TRUE
5 2 1 0 0 1 TRUE
6 2 2 1 1 1 TRUE
7 3 0 0 0 0 FALSE
8 3 1 0 0 0 FALSE
9 3 2 0 0 0 FALSE
10 4 0 0 0 0 FALSE
# i 50 more rows

But, is that really what we want to do? The answer is it depends. If we are going to stop
here, then the succinct code may be what we want. But, what if we want to also know if the
participant reported all side effects in each year. Perhaps, you’ve already worked out what
that code would look like. Perhaps you’re thinking something like:

drug_trial_sub %>%
rowwise() %>%
mutate(

any_se_year = sum(se_headache, se_diarrhea, se_dry_mouth) > 0,
all_se_year = sum(se_headache, se_diarrhea, se_dry_mouth) == 3

)

# A tibble: 60 x 7
# Rowwise:

id year se_headache se_diarrhea se_dry_mouth any_se_year all_se_year
<int> <int> <int> <int> <int> <lgl> <lgl>

1 1 0 0 1 1 TRUE FALSE
2 1 1 1 1 1 TRUE TRUE
3 1 2 1 1 0 TRUE FALSE
4 2 0 1 1 1 TRUE TRUE
5 2 1 0 0 1 TRUE FALSE

377



6 2 2 1 1 1 TRUE TRUE
7 3 0 0 0 0 FALSE FALSE
8 3 1 0 0 0 FALSE FALSE
9 3 2 0 0 0 FALSE FALSE
10 4 0 0 0 0 FALSE FALSE
# i 50 more rows

That works, and hopefully, you’re able to reason out why it works. But, there we go repeating
code again! So, in this case, we have to choose between more succinct code and the DRY
principle. When presented with that choice, I will typically favor the DRY principle. Therefore,
my code would look like this:

drug_trial_sub %>%
rowwise() %>%
mutate(

n_se_year = sum(se_headache, se_diarrhea, se_dry_mouth),
any_se_year = n_se_year > 0,
all_se_year = n_se_year == 3

)

# A tibble: 60 x 8
# Rowwise:

id year se_headache se_diarrhea se_dry_mouth n_se_year any_se_year
<int> <int> <int> <int> <int> <int> <lgl>

1 1 0 0 1 1 2 TRUE
2 1 1 1 1 1 3 TRUE
3 1 2 1 1 0 2 TRUE
4 2 0 1 1 1 3 TRUE
5 2 1 0 0 1 1 TRUE
6 2 2 1 1 1 3 TRUE
7 3 0 0 0 0 0 FALSE
8 3 1 0 0 0 0 FALSE
9 3 2 0 0 0 0 FALSE
10 4 0 0 0 0 0 FALSE
# i 50 more rows
# i 1 more variable: all_se_year <lgl>

Not only am I less like to make a typing error in this code, but I think the differences between
each line of code (i.e., what that line of code is doing) stands out more. In other words, the
intent of the code isn’t buried in unneeded words.

Before moving on, I also want to point out that the method above would not have worked on
factors. For example:

378



drug_trial_sub %>%
mutate(

se_headache = factor(se_headache, yn_levs, yn_labs),
se_diarrhea = factor(se_diarrhea, yn_levs, yn_labs),
se_dry_mouth = factor(se_dry_mouth, yn_levs, yn_labs)

) %>%
rowwise() %>%
mutate(

n_se_year = sum(se_headache, se_diarrhea, se_dry_mouth),
any_se_year = n_se_year > 0,
all_se_year = n_se_year == 3

)

Error in `mutate()`:
i In argument: `n_se_year = sum(se_headache, se_diarrhea,
se_dry_mouth)`.

i In row 1.
Caused by error in `Summary.factor()`:
! 'sum' not meaningful for factors

The sum() function cannot add factors. Back when I first introduced factors in this book, I
suggested that you keep the numeric version of your variables in your data frames and create
factors as new variables. I said that I thought this was a good idea because I often find that it
can be useful to have both versions of the variable hanging around during the analysis process.
The situation above is an example of what I was talking about.

26.5.6 Group_by mutations

So far, we’ve created variables that tell us if our participants reported any side effects in a
given and if they reported all 3 side effects in a given year. The next logical question might
be to ask if each participant experienced any side effect in any year. For that, we will need
dplyr’s group_by() function. Before discussing group_by(), I’m going to show you the code
I would use to accomplish this task:

drug_trial_sub %>%
rowwise() %>%
mutate(

n_se_year = sum(se_headache, se_diarrhea, se_dry_mouth),
any_se_year = n_se_year > 0,
all_se_year = n_se_year == 3

379



) %>%
group_by(id) %>%
mutate(any_se = sum(any_se_year) > 0)

# A tibble: 60 x 9
# Groups: id [20]

id year se_headache se_diarrhea se_dry_mouth n_se_year any_se_year
<int> <int> <int> <int> <int> <int> <lgl>

1 1 0 0 1 1 2 TRUE
2 1 1 1 1 1 3 TRUE
3 1 2 1 1 0 2 TRUE
4 2 0 1 1 1 3 TRUE
5 2 1 0 0 1 1 TRUE
6 2 2 1 1 1 3 TRUE
7 3 0 0 0 0 0 FALSE
8 3 1 0 0 0 0 FALSE
9 3 2 0 0 0 0 FALSE
10 4 0 0 0 0 0 FALSE
# i 50 more rows
# i 2 more variables: all_se_year <lgl>, any_se <lgl>

�Here’s what we did above:

• We created a new column in the drug_trial_sub data called any_se using the mutate()
function. The any_se column is TRUE if the participant reported any side effect in any
year and FALSE if they never reported a side effect in any year.

• We first grouped the data by id using the group_by() function. Note that grouping
the data by id with group_by() overrides grouping the data by row with rowwise() as
soon as R gets to that point in the code. In other words, the data is grouped by row
from rowwise() %>% to group_by(id) %>% and grouped by id after.

�Side Note: You can use dplyr::ungroup() to ungroup your data frames. This works
regardless of whether you grouped them with rowwise() or group_by().

I already introduced group_by() in the chapter on numerical descriptions of categorical vari-
ables. I also said that group_by() operationalizes the Split - Apply - Combine strategy
for data analysis. That means is that we split our data frame up into smaller data frames,
apply our calculation separately to each smaller data frame, and then combine those individual
results back together as a single result.

So, in the example above, the drug_trial_sub data frame was split into twenty separate little
data frames (i.e., one for each study id). Because there are 3 rows for each study id, each of
these 20 little data frames had three rows.

380



Each of those 20 little data frames was then passed to the mutate() function. The name-value
pair inside the mutate() function any_se = sum(any_se_year) > 0 told R to add up all the
values for the column any_se_year (i.e., sum(any_se_year)), compare that summed value
to 0 (i.e., sum(any_se_year) > 0), and then assign TRUE to any_se if the summed value is
greater than zero and FALSE otherwise. Then, all 20 of the little data frames are combined
back together and returned to us as a single data frame.

drug_trial_sub %>%
rowwise() %>%
mutate(

n_se_year = sum(se_headache, se_diarrhea, se_dry_mouth),
any_se_year = n_se_year > 0,
all_se_year = n_se_year == 3

) %>%
mutate(any_se = sum(any_se_year) > 0)

# A tibble: 60 x 9
# Rowwise:

id year se_headache se_diarrhea se_dry_mouth n_se_year any_se_year
<int> <int> <int> <int> <int> <int> <lgl>

1 1 0 0 1 1 2 TRUE
2 1 1 1 1 1 3 TRUE
3 1 2 1 1 0 2 TRUE
4 2 0 1 1 1 3 TRUE
5 2 1 0 0 1 1 TRUE
6 2 2 1 1 1 3 TRUE
7 3 0 0 0 0 0 FALSE
8 3 1 0 0 0 0 FALSE
9 3 2 0 0 0 0 FALSE
10 4 0 0 0 0 0 FALSE
# i 50 more rows
# i 2 more variables: all_se_year <lgl>, any_se <lgl>

You may be wondering why I used the sum() function when the values for any_se_year are
not numbers. The way R treats logical vectors can actually be pretty useful in situations like
this. That is, when mathematical operations are applied to logical vectors, R treats FALSE
as a 0 and TRUE as a 1. So, for participant 1, R calculated the value for any_se something
like this:

any_se_year <- c(TRUE, TRUE, TRUE)
any_se_year

381



[1] TRUE TRUE TRUE

sum_any_se_year <- sum(any_se_year)
sum_any_se_year

[1] 3

any_se <- sum_any_se_year > 0
any_se

[1] TRUE

R used the recycling rules to copy that result to the other two rows of data from participant
1. R then repeated that process for every other participant, and then returned the combined
data frame to us.

I hope you found the example above useful. I think it’s fairly representative of the kinds of
data management stuff I tend to do on a day-to-day basis. Of course, missing data always
complicates things (more to come on that!). In the next chapter, we will round out our
introduction to the basics of data management by learning how to subset rows and columns
of a data frame.

382



27 Subsetting Data Frames

Subsetting data frames is another one of the most common data management tasks we carryout
in our data analysis projects. Subsetting data frames just refers to the process of deciding which
columns and rows to keep in your data frame and which to drop.

For example, we may need to subset the rows of a data frame because we’re interested in
understanding a subpopulation in our sample. Below, we only want to analyze the rows that
correspond to participants from Texas.

Or, perhaps we’re only interested in a subset of the statistics returned to me in a data frame of
analysis results. Below, we only want to view and present the variable name, variable category,
count, and percent.

383



Fortunately, the dplyr package includes functions that make it really easy for us to subset our
data frames – even in some fairly complicated ways. Let’s start by simulating the same drug
trial data we simulated in the last chapter and use it to work through some examples.

# Load dplyr
library(dplyr)

set.seed(123)

drug_trial <- tibble(
# Follow-up year, 0 = baseline, 1 = year one, 2 = year two.
year = rep(0:2, times = 20),
# Participant age a baseline. Must be between the ages of 35 and 75 at
# baseline to be eligible for the study
age = sample(35:75, 20, TRUE) %>% rep(each = 3),
# Drug the participant received, Placebo or active
drug = sample(c("Placebo", "Active"), 20, TRUE) %>%

rep(each = 3),
# Reported headaches side effect, Y/N
se_headache = if_else(

drug == "Placebo",
sample(0:1, 60, TRUE, c(.95,.05)),
sample(0:1, 60, TRUE, c(.10, .90))

384



),
# Report diarrhea side effect, Y/N
se_diarrhea = if_else(

drug == "Placebo",
sample(0:1, 60, TRUE, c(.98,.02)),
sample(0:1, 60, TRUE, c(.20, .80))

),
# Report dry mouth side effect, Y/N
se_dry_mouth = if_else(

drug == "Placebo",
sample(0:1, 60, TRUE, c(.97,.03)),
sample(0:1, 60, TRUE, c(.30, .70))

),
# Participant had myocardial infarction in study year, Y/N
mi = if_else(

drug == "Placebo",
sample(0:1, 60, TRUE, c(.85, .15)),
sample(0:1, 60, TRUE, c(.80, .20))

)
)

As a reminder, we are simulating some drug trial data that includes the following variables:

• id: Study id, there are 20 people enrolled in the trial.

• year: Follow-up year, 0 = baseline, 1 = year one, 2 = year two.

• age: Participant age a baseline. Must be between the ages of 35 and 75 at baseline to
be eligible for the study.

• drug: Drug the participant received, Placebo or active.

• se_headache: Reported headaches side effect, Y/N.

• se_diarrhea: Report diarrhea side effect, Y/N.

• se_dry_mouth: Report dry mouth side effect, Y/N.

• mi: Participant had myocardial infarction in study year, Y/N.

Actually, this data is slightly different than the data we used in the last chapter. Did you
catch the difference? Take another look:

drug_trial

385



# A tibble: 60 x 7
year age drug se_headache se_diarrhea se_dry_mouth mi

<int> <int> <chr> <int> <int> <int> <int>
1 0 65 Active 0 1 1 0
2 1 65 Active 1 1 1 0
3 2 65 Active 1 1 0 0
4 0 49 Active 1 1 1 0
5 1 49 Active 0 0 1 0
6 2 49 Active 1 1 1 0
7 0 48 Placebo 0 0 0 0
8 1 48 Placebo 0 0 0 0
9 2 48 Placebo 0 0 0 0
10 0 37 Placebo 0 0 0 0
# i 50 more rows

we forgot to put a study id in our data. Because we simulated this data above, the best way
to fix this oversite is to make the necessary change to the simulation code above. But, let’s
pretend that someone sent us this data instead, and we have to add a new study id column to
it. Well, we now know how to use the mutate() function to columns to our data frame. We
can do so like this:

drug_trial <- drug_trial %>%
mutate(

# Study id, there are 20 people enrolled in the trial.
id = rep(1:20, each = 3)

) %>%
print()

# A tibble: 60 x 8
year age drug se_headache se_diarrhea se_dry_mouth mi id

<int> <int> <chr> <int> <int> <int> <int> <int>
1 0 65 Active 0 1 1 0 1
2 1 65 Active 1 1 1 0 1
3 2 65 Active 1 1 0 0 1
4 0 49 Active 1 1 1 0 2
5 1 49 Active 0 0 1 0 2
6 2 49 Active 1 1 1 0 2
7 0 48 Placebo 0 0 0 0 3
8 1 48 Placebo 0 0 0 0 3
9 2 48 Placebo 0 0 0 0 3
10 0 37 Placebo 0 0 0 0 4
# i 50 more rows

386



And now we have the study id in our data. But, by default R adds new columns as the
rightmost column of the data frame. In terms of analysis, it doesn’t really matter where this
column is located in our data. R couldn’t care less. However, when humans look at this data,
they typically expect the study id (or some other identifier) to be the first column in the data
frame. That is a job for select().

27.1 The select() function

drug_trial %>%
select(id, year, age, se_headache, se_diarrhea, se_dry_mouth, mi)

# A tibble: 60 x 7
id year age se_headache se_diarrhea se_dry_mouth mi

<int> <int> <int> <int> <int> <int> <int>
1 1 0 65 0 1 1 0
2 1 1 65 1 1 1 0
3 1 2 65 1 1 0 0
4 2 0 49 1 1 1 0
5 2 1 49 0 0 1 0
6 2 2 49 1 1 1 0
7 3 0 48 0 0 0 0
8 3 1 48 0 0 0 0
9 3 2 48 0 0 0 0
10 4 0 37 0 0 0 0
# i 50 more rows

�Here’s what we did above:

• we used the select() function to change the order of the columns in the drug_trial
data frame so that id would be the first variable in the data frame when reading from
left to right.

• You can type ?select into your R console to view the help documentation for this
function and follow along with the explanation below.

• The first argument to the select() function is .data. The value passed to .data
should always be a data frame. In this book, we will often pass data frames to the .data
argument using the pipe operator (e.g., df %>% select()).

• The second argument to the select() function is .... The value passed to the ...
argument should column names or expressions that return column positions. We’ll dive
deeper into this soon.

387



More generally, the select() function tells R which variables in your data frame to keep (or
drop) and in what order.

The code above gave us the result we wanted. � But, it can be tedious and error prone to
manually type every variable name inside the select() function. Did you notice that we
forgot the drug column “by accident”?

Thankfully, the select() function is one of several dplyr functions that accept tidy-select ar-
gument modifiers (i.e., functions and operators). In this chapter, we will show you some of the
tidy-select argument modifiers we regularly use, but you can always type ?dplyr_tidy_select
into your console to see a complete list.

In our little example above, we could have used the tidy-select everything() function to make
our code easier to write and we wouldn’t have accidently missed the drug column. We can do
so like this:

drug_trial <- drug_trial %>%
select(id, everything()) %>%
print()

# A tibble: 60 x 8
id year age drug se_headache se_diarrhea se_dry_mouth mi

<int> <int> <int> <chr> <int> <int> <int> <int>
1 1 0 65 Active 0 1 1 0
2 1 1 65 Active 1 1 1 0
3 1 2 65 Active 1 1 0 0
4 2 0 49 Active 1 1 1 0
5 2 1 49 Active 0 0 1 0
6 2 2 49 Active 1 1 1 0
7 3 0 48 Placebo 0 0 0 0
8 3 1 48 Placebo 0 0 0 0
9 3 2 48 Placebo 0 0 0 0
10 4 0 37 Placebo 0 0 0 0
# i 50 more rows

�Here’s what we did above:

• we used the select() function to change the order of the columns in the drug_trial
data frame so that id would be the first variable in the data frame when reading from
left to right.

• Rather than explicitly typing the other column names, we used the everything() tidy-
select function. As you may have guessed, everything() tells R to do X (in this keep)
to all the other variables not explicitly mentioned.

388

https://dplyr.tidyverse.org/reference/dplyr_tidy_select.html


For our next example, let’s go ahead and add our mean-centered age variable to our
drug_trial data again. We did this for the first time in the last chapter, in case you
missed.

drug_trial <- drug_trial %>%
mutate(age_center = age - mean(age)) %>%
print()

# A tibble: 60 x 9
id year age drug se_headache se_diarrhea se_dry_mouth mi age_center

<int> <int> <int> <chr> <int> <int> <int> <int> <dbl>
1 1 0 65 Acti~ 0 1 1 0 11.3
2 1 1 65 Acti~ 1 1 1 0 11.3
3 1 2 65 Acti~ 1 1 0 0 11.3
4 2 0 49 Acti~ 1 1 1 0 -4.7
5 2 1 49 Acti~ 0 0 1 0 -4.7
6 2 2 49 Acti~ 1 1 1 0 -4.7
7 3 0 48 Plac~ 0 0 0 0 -5.7
8 3 1 48 Plac~ 0 0 0 0 -5.7
9 3 2 48 Plac~ 0 0 0 0 -5.7
10 4 0 37 Plac~ 0 0 0 0 -16.7
# i 50 more rows

One way we will often use select() is for performing quick little data checks. For example,
let’s say that we wanted to make sure the code we wrote above actually did what we intended
it to do. If we print the entire data frame to the screen, age and age_center aren’t directly
side-by-side, and there’s a lot of other visual clutter from the other variables. In a case like
this, we would use select() to get a clearer picture:

drug_trial %>%
select(age, age_center)

# A tibble: 60 x 2
age age_center

<int> <dbl>
1 65 11.3
2 65 11.3
3 65 11.3
4 49 -4.7
5 49 -4.7
6 49 -4.7

389



7 48 -5.7
8 48 -5.7
9 48 -5.7
10 37 -16.7
# i 50 more rows

�Here’s what we did above:

• we used the select() function to view the age and age_center columns only.

• we can type individual column names, separated by commas, into select() to return a
data frame containing only those columns, and in that order.

� Warning: Notice that we didn’t assign our result above to anything (i.e., there’s no
drug_trial <-). If we had done so, the drug_trial data would have contained these two
columns only. We didn’t want to drop the other columns. We could have assigned the result
of the code to a different R object (e.g., check_age <-, but it wasn’t really necessary. We
just wanted to quickly view age and age_center side-by-side for data checking purposes.
When we’re satisfied that we coded it correctly, we can move on. There’s no need to save
those results to an R object.

You may also recall that we wanted to subset the drug_trial data to include only the columns
we needed for the rowwise demonstrations. Here is the code we used to do so:

drug_trial %>%
select(id, year, starts_with("se"))

# A tibble: 60 x 5
id year se_headache se_diarrhea se_dry_mouth

<int> <int> <int> <int> <int>
1 1 0 0 1 1
2 1 1 1 1 1
3 1 2 1 1 0
4 2 0 1 1 1
5 2 1 0 0 1
6 2 2 1 1 1
7 3 0 0 0 0
8 3 1 0 0 0
9 3 2 0 0 0
10 4 0 0 0 0
# i 50 more rows

�Here’s what we did above:

390



• we used the select() function to view the id year, se_headache, se_diarrhea, and
se_dry_mouth columns only.

• we used the tidy-select starts_with() function to select all the side effect variables.

we already know that we can use everything() to select all of the other variables in a data
frame, but what if we just want to grab a range or group of other variables in a data frame?
tidy-select makes it easy for us. Above, we used the starts_with() function to select all the
columns with names that literally start with the letters “se”. Because all of the side effect
columns are directly next to each other (i.e., no columns in between them) we could have also
used the colon operator : like this:

drug_trial %>%
select(id, year, se_headache:se_dry_mouth)

# A tibble: 60 x 5
id year se_headache se_diarrhea se_dry_mouth

<int> <int> <int> <int> <int>
1 1 0 0 1 1
2 1 1 1 1 1
3 1 2 1 1 0
4 2 0 1 1 1
5 2 1 0 0 1
6 2 2 1 1 1
7 3 0 0 0 0
8 3 1 0 0 0
9 3 2 0 0 0
10 4 0 0 0 0
# i 50 more rows

While either method gets us the same result, we tend to prefer using starts_with() when
possible. We think it makes your code easier to read (i.e., “Oh, he’s selecting all the side effect
columns here.”).

In addition to starts_with(), there is also an ends_with() tidy-select function that can also
be useful. For example, we’ve named factors with the _f naming convention throughout the
book. We could use that, along with the ends-with() function to create a subset of our data
that includes only the factor versions of our side effects columns.

# Add the side effect factor columns to our data frame again...
yn_levs <- c(0, 1)
yn_labs <- c("No", "Yes")

391



drug_trial <- drug_trial %>%
mutate(

se_headache_f = factor(se_headache, yn_levs, yn_labs),
se_diarrhea_f = factor(se_diarrhea, yn_levs, yn_labs),
se_dry_mouth_f = factor(se_dry_mouth, yn_levs, yn_labs)

)

drug_trial %>%
select(id, year, ends_with("_f"))

# A tibble: 60 x 5
id year se_headache_f se_diarrhea_f se_dry_mouth_f

<int> <int> <fct> <fct> <fct>
1 1 0 No Yes Yes
2 1 1 Yes Yes Yes
3 1 2 Yes Yes No
4 2 0 Yes Yes Yes
5 2 1 No No Yes
6 2 2 Yes Yes Yes
7 3 0 No No No
8 3 1 No No No
9 3 2 No No No
10 4 0 No No No
# i 50 more rows

Note

Variable names are important! Throughout this book, I’ve tried to repeatedly emphasize
the importance of coding style – including the way we name our R objects. Many people
who are new to data management and analysis (and some who aren’t, MDL) don’t fully
appreciate the importance of such things. We hope that the preceding two examples
are helping you to see why the little details, like variable names, are important. Using
consistent variable naming conventions, for example, allows us to write code that requires
less typing, is easier for humans to skim and understand, and is less prone to typos and
other related errors.

we can also select columns we want to keep by position instead of name. We don’t do this
often. We think it’s generally better to use column names or tidy-select argument modifiers
when subsetting columns in your data frame. However, we do sometimes select columns by
position when we’re writing our own functions. Therefore, we want to quickly show you what
this looks like:

392



drug_trial %>%
select(1:2, 4)

# A tibble: 60 x 3
id year drug

<int> <int> <chr>
1 1 0 Active
2 1 1 Active
3 1 2 Active
4 2 0 Active
5 2 1 Active
6 2 2 Active
7 3 0 Placebo
8 3 1 Placebo
9 3 2 Placebo
10 4 0 Placebo
# i 50 more rows

�Here’s what we did above:

• we passed column numbers to the select() function to keep the 1st, 2nd, and 4th
columns from our drug_trial data frame.

Finally, in addition to using select() to keep columns in our data frame, we can also use
select() to explicitly drop columns from our data frame. To do so, we just need to use either
the subtraction symbol (-) or the Not operator (!).

Think back to our example from the previous chapter. There we created some new variables
that captured information about participants reporting any and all side effects. During that
process we created a column that contained a count of the side effects experienced in each year
– n_se_year.

drug_trial_sub <- drug_trial %>%
rowwise() %>%
mutate(

n_se_year = sum(se_headache, se_diarrhea, se_dry_mouth),
any_se_year = n_se_year > 0,
all_se_year = n_se_year == 3

) %>%
group_by(id) %>%
mutate(any_se = sum(any_se_year) > 0) %>%
ungroup() %>%

393



select(id:year, n_se_year:any_se) %>%
print()

# A tibble: 60 x 6
id year n_se_year any_se_year all_se_year any_se

<int> <int> <int> <lgl> <lgl> <lgl>
1 1 0 2 TRUE FALSE TRUE
2 1 1 3 TRUE TRUE TRUE
3 1 2 2 TRUE FALSE TRUE
4 2 0 3 TRUE TRUE TRUE
5 2 1 1 TRUE FALSE TRUE
6 2 2 3 TRUE TRUE TRUE
7 3 0 0 FALSE FALSE FALSE
8 3 1 0 FALSE FALSE FALSE
9 3 2 0 FALSE FALSE FALSE
10 4 0 0 FALSE FALSE FALSE
# i 50 more rows

Let’s say we decided we don’t need n_se_year column now that we created any_se_year,
all_se_year, and any_se. We can easily drop it from the data frame in a couple of ways:

drug_trial_sub %>%
select(-n_se_year)

# A tibble: 60 x 5
id year any_se_year all_se_year any_se

<int> <int> <lgl> <lgl> <lgl>
1 1 0 TRUE FALSE TRUE
2 1 1 TRUE TRUE TRUE
3 1 2 TRUE FALSE TRUE
4 2 0 TRUE TRUE TRUE
5 2 1 TRUE FALSE TRUE
6 2 2 TRUE TRUE TRUE
7 3 0 FALSE FALSE FALSE
8 3 1 FALSE FALSE FALSE
9 3 2 FALSE FALSE FALSE
10 4 0 FALSE FALSE FALSE
# i 50 more rows

394



drug_trial_sub %>%
select(!n_se_year)

# A tibble: 60 x 5
id year any_se_year all_se_year any_se

<int> <int> <lgl> <lgl> <lgl>
1 1 0 TRUE FALSE TRUE
2 1 1 TRUE TRUE TRUE
3 1 2 TRUE FALSE TRUE
4 2 0 TRUE TRUE TRUE
5 2 1 TRUE FALSE TRUE
6 2 2 TRUE TRUE TRUE
7 3 0 FALSE FALSE FALSE
8 3 1 FALSE FALSE FALSE
9 3 2 FALSE FALSE FALSE
10 4 0 FALSE FALSE FALSE
# i 50 more rows

Note that we could have also dropped it indirectly by selecting everything else:

drug_trial_sub %>%
select(id:year, any_se_year:any_se)

# A tibble: 60 x 5
id year any_se_year all_se_year any_se

<int> <int> <lgl> <lgl> <lgl>
1 1 0 TRUE FALSE TRUE
2 1 1 TRUE TRUE TRUE
3 1 2 TRUE FALSE TRUE
4 2 0 TRUE TRUE TRUE
5 2 1 TRUE FALSE TRUE
6 2 2 TRUE TRUE TRUE
7 3 0 FALSE FALSE FALSE
8 3 1 FALSE FALSE FALSE
9 3 2 FALSE FALSE FALSE
10 4 0 FALSE FALSE FALSE
# i 50 more rows

But, we think this is generally a bad idea. Not only is it more typing, but skimming through
your code doesn’t really tell us (or future you) what you were trying to accomplish there.

395



27.2 The rename() function

Sometimes, we want to change the names of some, or all, of the columns in our data frame. For
me, this most commonly comes up with data I’ve imported from someone else. For example,
let’s say I’m importing data that uses column names that aren’t super informative. We saw
column names like that when we imported NHANES data. It looked something like this:

nhanes <- tibble(
SEQN = c(1:4),
ALQ101 = c(1, 2, 1, 2),
ALQ110 = c(2, 2, 2, 1)

) %>%
print()

# A tibble: 4 x 3
SEQN ALQ101 ALQ110
<int> <dbl> <dbl>

1 1 1 2
2 2 2 2
3 3 1 2
4 4 2 1

we previously learned how to change these column names on import (i.e., col_names), but
let’s say we didn’t do that for whatever reason. We can rename columns in our data frame
using the rename() function like so:

nhanes %>%
rename(

id = SEQN,
drinks_12_year = ALQ101,
drinks_12_life = ALQ110

)

# A tibble: 4 x 3
id drinks_12_year drinks_12_life

<int> <dbl> <dbl>
1 1 1 2
2 2 2 2
3 3 1 2
4 4 2 1

396



�Here’s what we did above:

• we used the rename() function to change the name of each column in the drug_trial
data frame to be more informative.

• You can type ?rename into your R console to view the help documentation for this
function and follow along with the explanation below.

• The first argument to the rename() function is .data. The value passed to .data
should always be a data frame. In this book, we will often pass data frames to the .data
argument using the pipe operator (e.g., df %>% rename()).

• The second argument to the rename() function is .... The value passed to the ...
argument should be a name value pair, or series of name-value pairs separated by columns.
The name-value pairs should be in the format new name = original name.

we think these names are much better, but for the sake of argument let’s say that we wanted
to keep the original names – just coerce them to lowercase. We can do that using the
rename_with() variation of the rename() function in combination with the tolower() func-
tion:

nhanes %>%
rename_with(tolower)

# A tibble: 4 x 3
seqn alq101 alq110
<int> <dbl> <dbl>

1 1 1 2
2 2 2 2
3 3 1 2
4 4 2 1

�Here’s what we did above:

• we used the rename_with() function to coerce all column names in the drug_trial data
frame to lowercase.

• You can type ?rename into your R console to view the help documentation for this
function and follow along with the explanation below.

• The first argument to the rename_with() function is .data. The value passed to .data
should always be a data frame. In this book, we will often pass data frames to the .data
argument using the pipe operator (e.g., df %>% rename_with()).

397



• The second argument to the rename_with() function is .fn. The value passed to the
.fn argument should be a function that you want to apply to all the columns selected
in the .cols argument (see below).

• The third argument to the rename_with() function is .cols. The value passed to the
.cols argument should be the columns you want to apply the function passed to the
.fn argument to. You can select the columns using tidy-select argument modifiers.

27.3 The filter() function

we just saw how to keep and drop columns in our data frame using the select() function. We
can keep and drop rows in our data frame using the filter() function or the slice() function.

Similar to selecting columns by position instead of name:

drug_trial %>%
select(1:2, 4)

# A tibble: 60 x 3
id year drug

<int> <int> <chr>
1 1 0 Active
2 1 1 Active
3 1 2 Active
4 2 0 Active
5 2 1 Active
6 2 2 Active
7 3 0 Placebo
8 3 1 Placebo
9 3 2 Placebo
10 4 0 Placebo
# i 50 more rows

we can also select rows we want to keep by position. Again, we don’t do this often, but it is
sometimes useful when we’re writing our own functions. Therefore, we want to quickly show
you what this looks like:

drug_trial %>%
slice(1:5)

398



# A tibble: 5 x 12
id year age drug se_headache se_diarrhea se_dry_mouth mi age_center

<int> <int> <int> <chr> <int> <int> <int> <int> <dbl>
1 1 0 65 Active 0 1 1 0 11.3
2 1 1 65 Active 1 1 1 0 11.3
3 1 2 65 Active 1 1 0 0 11.3
4 2 0 49 Active 1 1 1 0 -4.7
5 2 1 49 Active 0 0 1 0 -4.7
# i 3 more variables: se_headache_f <fct>, se_diarrhea_f <fct>,
# se_dry_mouth_f <fct>

�Here’s what we did above:

• we used the slice() function to keep only the first 5 rows in the drug_trial data frame.

• You can type ?slice into your R console to view the help documentation for this function
and follow along with the explanation below.

• The first argument to the slice() function is .data. The value passed to .data should
always be a data frame. In this book, we will often pass data frames to the .data
argument using the pipe operator (e.g., df %>% slice()).

• The second argument to the slice() function is .... The value passed to the ...
argument should be a row numbers you want returned to you.

Generally speaking, we’re far more likely to use the filter() function to select only a subset
of rows from our data frame. Two of the most common scenarios, of many possible scenarios,
where want to subset rows include:

• Performing a subgroup analysis. This is a situation where we want our analysis to include
only some of the people (or places, or things) in our data frame.

• Performing a complete case analysis. This is a situation where we want to remove rows
that contain missing values from our data frame before performing an analysis.

27.3.1 Subgroup analysis

Let’s say that we want to count the number of people in the drug trial who reported having
headaches in the baseline year by drug status (active vs. placebo). We would first use filter()
to keep only the rows that contain data from the baseline year:

drug_trial %>%
filter(year == 0)

399



# A tibble: 20 x 12
id year age drug se_headache se_diarrhea se_dry_mouth mi age_center

<int> <int> <int> <chr> <int> <int> <int> <int> <dbl>
1 1 0 65 Acti~ 0 1 1 0 11.3
2 2 0 49 Acti~ 1 1 1 0 -4.7
3 3 0 48 Plac~ 0 0 0 0 -5.7
4 4 0 37 Plac~ 0 0 0 0 -16.7
5 5 0 71 Plac~ 0 0 0 0 17.3
6 6 0 48 Plac~ 0 0 0 0 -5.7
7 7 0 59 Acti~ 1 1 1 0 5.3
8 8 0 60 Plac~ 0 0 0 0 6.3
9 9 0 61 Acti~ 1 1 1 0 7.3
10 10 0 39 Acti~ 1 0 1 0 -14.7
11 11 0 61 Plac~ 0 0 0 0 7.3
12 12 0 62 Plac~ 1 0 1 0 8.3
13 13 0 43 Plac~ 0 0 0 0 -10.7
14 14 0 63 Plac~ 0 0 0 0 9.3
15 15 0 69 Acti~ 1 1 1 0 15.3
16 16 0 42 Plac~ 0 0 0 0 -11.7
17 17 0 60 Plac~ 0 0 0 0 6.3
18 18 0 41 Acti~ 1 1 1 0 -12.7
19 19 0 43 Plac~ 0 0 0 0 -10.7
20 20 0 53 Plac~ 0 0 0 0 -0.700
# i 3 more variables: se_headache_f <fct>, se_diarrhea_f <fct>,
# se_dry_mouth_f <fct>

�Here’s what we did above:

• we used the filter() function to keep only the rows in the drug_trial data frame that
contain data from the baseline year.

• You can type ?filter into your R console to view the help documentation for this
function and follow along with the explanation below.

• The first argument to the filter() function is .data. The value passed to .data
should always be a data frame. In this book, we will often pass data frames to the .data
argument using the pipe operator (e.g., df %>% filter()).

• The second argument to the filter() function is .... The value passed to the ...
argument should be a name-value pair or multiple name value pairs separated by commas.
The ... argument is where you will tell filter() how to decide which rows to keep.

400



Warning

Remember, that in the R language = (i.e., one equal sign) and == (i.e., two equal signs)
are different things. The = operator tells R to make the thing on the left equal to the
thing on the right. In other words, it assigns values. The == asks R if the thing on the
left is equal to the thing on the right. In other words, it test the equality of values.

Now, we can use the descriptive analysis techniques we’ve already learned to answer our
research question:

drug_trial %>%
filter(year == 0) %>%
group_by(drug, se_headache_f) %>%
summarise(n = n())

# A tibble: 4 x 3
# Groups: drug [2]
drug se_headache_f n
<chr> <fct> <int>

1 Active No 1
2 Active Yes 6
3 Placebo No 12
4 Placebo Yes 1

So, 6 out of 7 (~ 86%) of the people in our active drug group reported headaches in the baseline
year. Now, let’s say that we have reason to suspect that the drug affects people differently
based on their age. Let’s go ahead and repeat this analysis, but only in a subgroup of people
who are below age 65. Again, we can use the filter() function to do this:

drug_trial %>%
filter(year == 0) %>%
filter(age < 65) %>%
group_by(drug, se_headache_f) %>%
summarise(n = n())

# A tibble: 3 x 3
# Groups: drug [2]
drug se_headache_f n
<chr> <fct> <int>

1 Active Yes 5
2 Placebo No 11
3 Placebo Yes 1

401



Wow! It looks like everyone under age 65 who received active drug also reported headaches!

we can show this more explicitly by using passing the value FALSE to the .drop argument of
group_by(). This tells R to keep all factor levels in the output, even if they were observed in
the data zero times.

drug_trial %>%
filter(year == 0) %>%
filter(age < 65) %>%
group_by(drug, se_headache_f, .drop = FALSE) %>%
summarise(n = n())

# A tibble: 4 x 3
# Groups: drug [2]
drug se_headache_f n
<chr> <fct> <int>

1 Active No 0
2 Active Yes 5
3 Placebo No 11
4 Placebo Yes 1

Finally, we could make our code above more succinct by combining our two filter functions
into one:

drug_trial %>%
filter(year == 0 & age < 65) %>%
group_by(drug, se_headache_f, .drop = FALSE) %>%
summarise(n = n())

# A tibble: 4 x 3
# Groups: drug [2]
drug se_headache_f n
<chr> <fct> <int>

1 Active No 0
2 Active Yes 5
3 Placebo No 11
4 Placebo Yes 1

�Here’s what we did above:

402



• we used the filter() function to keep only the rows in the drug_trial data frame that
contain data from the baseline year AND (&) contain data from rows with a value that
is less than 65 in the age column. The AND (&) here is important. A row must satisfy
both of these conditions in order for R to keep it in the returned data frame. If we had
used OR instead (filter(year == 0 | age < 65)), then only one condition OR the
other would need to be met for R to keep the row in the returned data frame.

Note

In the R language, we use the pipe operator to create OR conditions. The pipe operator
looks like | and is probably the key immediately to the right of your enter/return key on
your keyboard.

27.3.2 Complete case analysis

Now let’s say that we want to compare age at baseline by drug status (active vs. placebo).
Additionally, let’s say that we have some missing values in our data.

Let’s first simulate some new data with missing values:

drug_trial_short <- drug_trial %>%
filter(year == 0) %>%
slice(1:10) %>%
mutate(

age = replace(age, 1, NA),
drug = replace(drug, 4, NA)

) %>%
print()

# A tibble: 10 x 12
id year age drug se_headache se_diarrhea se_dry_mouth mi age_center

<int> <int> <int> <chr> <int> <int> <int> <int> <dbl>
1 1 0 NA Acti~ 0 1 1 0 11.3
2 2 0 49 Acti~ 1 1 1 0 -4.7
3 3 0 48 Plac~ 0 0 0 0 -5.7
4 4 0 37 <NA> 0 0 0 0 -16.7
5 5 0 71 Plac~ 0 0 0 0 17.3
6 6 0 48 Plac~ 0 0 0 0 -5.7
7 7 0 59 Acti~ 1 1 1 0 5.3
8 8 0 60 Plac~ 0 0 0 0 6.3
9 9 0 61 Acti~ 1 1 1 0 7.3
10 10 0 39 Acti~ 1 0 1 0 -14.7

403



# i 3 more variables: se_headache_f <fct>, se_diarrhea_f <fct>,
# se_dry_mouth_f <fct>

�Here’s what we did above:

• we used the filter() and slice() functions to create a new data frame that contains
only a subset of our original drug_trial data frame. The subset includes only the first
10 rows of the data frame remaining after selecting only the baseline year rows from the
original data frame.

• we used the replace() function to replace the first value of age with NA and the fourth
value of drug with NA.

• You can type ?replace into your R console to view the help documentation for this
function.

If we try to answer our research question above without dealing with the missing data, we get
the following undesirable results:

drug_trial_short %>%
group_by(drug) %>%
summarise(mean_age = mean(age))

# A tibble: 3 x 2
drug mean_age
<chr> <dbl>

1 Active NA
2 Placebo 56.8
3 <NA> 37

One way we can improve our result is by adding the na.rm argument to the mean() function.

drug_trial_short %>%
group_by(drug) %>%
summarise(mean_age = mean(age, na.rm = TRUE))

# A tibble: 3 x 2
drug mean_age
<chr> <dbl>

1 Active 52
2 Placebo 56.8
3 <NA> 37

404



But, we previously saw how it can sometimes be more efficient to drop the row with missing
data from the data frame explicitly. This is called a complete case analysis or list-wise
deletion.

drug_trial_short %>%
filter(!is.na(age)) %>%
group_by(drug) %>%
summarise(mean_age = mean(age))

# A tibble: 3 x 2
drug mean_age
<chr> <dbl>

1 Active 52
2 Placebo 56.8
3 <NA> 37

However, we still have that missing value for drug. We can easily drop the row with the
missing value by adding an additional value to the ... argument of our filter() function:

drug_trial_short %>%
filter(!is.na(age) & !is.na(drug)) %>%
group_by(drug) %>%
summarise(mean_age = mean(age))

# A tibble: 2 x 2
drug mean_age
<chr> <dbl>

1 Active 52
2 Placebo 56.8

27.4 Deduplication

Another common data management task that we want to discuss in this chapter is deduplicat-
ing data. Let’s go ahead and simulate some data to illustrate what we mean:

df <- tribble(
~id, ~day, ~x,

1, 1, 1,
1, 2, 11,

405



2, 1, 12,
2, 2, 13,
2, 2, 14,
3, 1, 12,
3, 1, 12,
3, 2, 13,
4, 1, 13,
5, 1, 10,
5, 2, 11,
5, 1, 10

) %>%
print()

# A tibble: 12 x 3
id day x

<dbl> <dbl> <dbl>
1 1 1 1
2 1 2 11
3 2 1 12
4 2 2 13
5 2 2 14
6 3 1 12
7 3 1 12
8 3 2 13
9 4 1 13
10 5 1 10
11 5 2 11
12 5 1 10

• All id’s but 4 have multiple observations.

• ID 2 has row with duplicate values for id and day, but a non-duplicate value for x. These
rows are partial duplicates.

• ID 3 has a row with duplicate values for all three columns (i.e., 3, 1, 12). These rows
are complete duplicates.

• ID 5 has a row with duplicate values for all three columns (i.e., 5, 1, 10). These rows
are complete duplicates. However, they are not in sequential order in the dataset.

406



27.4.1 The distinct() function

we can use dplyr’s distinct() function to remove all complete duplicates from the data
frame:

df %>%
distinct()

# A tibble: 10 x 3
id day x

<dbl> <dbl> <dbl>
1 1 1 1
2 1 2 11
3 2 1 12
4 2 2 13
5 2 2 14
6 3 1 12
7 3 2 13
8 4 1 13
9 5 1 10
10 5 2 11

�Here’s what we did above:

• we used the distinct() function to keep only one row from a group of complete duplicate
rows in the df data frame.

• You can type ?distinct into your R console to view the help documentation for this
function and follow along with the explanation below.

• The first argument to the distinct() function is .data. The value passed to .data
should always be a data frame. In this book, we will often pass data frames to the .data
argument using the pipe operator (e.g., df %>% distinct()).

• The second argument to the distinct() function is .... The value passed to the
... argument should be the variables to use when determining uniqueness. Passing no
variables to the ... argument is equivalent to pass all variables to the ... argument.

27.4.2 Complete duplicate row add tag

If want to identify the complete duplicate rows, without immediately dropping them, we can
use the duplicated() function inside the mutate() function. This creates a new column in

407



our data frame that has the value TRUE when the row is a complete duplicate and the value
FALSE otherwise.

df %>%
mutate(dup = duplicated(df))

# A tibble: 12 x 4
id day x dup

<dbl> <dbl> <dbl> <lgl>
1 1 1 1 FALSE
2 1 2 11 FALSE
3 2 1 12 FALSE
4 2 2 13 FALSE
5 2 2 14 FALSE
6 3 1 12 FALSE
7 3 1 12 TRUE
8 3 2 13 FALSE
9 4 1 13 FALSE
10 5 1 10 FALSE
11 5 2 11 FALSE
12 5 1 10 TRUE

Alternatively, we could get the same result using:

df %>%
group_by_all() %>%
mutate(

n_row = row_number(),
dup = n_row > 1

)

# A tibble: 12 x 5
# Groups: id, day, x [10]

id day x n_row dup
<dbl> <dbl> <dbl> <int> <lgl>

1 1 1 1 1 FALSE
2 1 2 11 1 FALSE
3 2 1 12 1 FALSE
4 2 2 13 1 FALSE
5 2 2 14 1 FALSE
6 3 1 12 1 FALSE

408



7 3 1 12 2 TRUE
8 3 2 13 1 FALSE
9 4 1 13 1 FALSE
10 5 1 10 1 FALSE
11 5 2 11 1 FALSE
12 5 1 10 2 TRUE

�Here’s what we did above:

• we used the group_by_all() function to split our data frame into multiple data frames
grouped by all the columns in df.

• we used the row_number() to sequentially count every row in each of the little data
frames created by group_by_all(). We assigned the sequential count to a new column
named n_row.

• we created a new column named dup that has a value of TRUE when the value of n_row
is greater than 1 and FALSE otherwise.

Notice that R only tags the second in a set of duplicate rows as a duplicate. Below we tag
both rows with complete duplicate values.

df %>%
mutate(dup = duplicated(.) | duplicated(., fromLast = TRUE))

# A tibble: 12 x 4
id day x dup

<dbl> <dbl> <dbl> <lgl>
1 1 1 1 FALSE
2 1 2 11 FALSE
3 2 1 12 FALSE
4 2 2 13 FALSE
5 2 2 14 FALSE
6 3 1 12 TRUE
7 3 1 12 TRUE
8 3 2 13 FALSE
9 4 1 13 FALSE
10 5 1 10 TRUE
11 5 2 11 FALSE
12 5 1 10 TRUE

409



27.4.3 Partial duplicate rows

df %>%
distinct(id, day, .keep_all = TRUE)

# A tibble: 9 x 3
id day x

<dbl> <dbl> <dbl>
1 1 1 1
2 1 2 11
3 2 1 12
4 2 2 13
5 3 1 12
6 3 2 13
7 4 1 13
8 5 1 10
9 5 2 11

�Here’s what we did above:

• we used the distinct() function to keep only one row from a group of duplicate rows
in the df data frame.

• You can type ?distinct into your R console to view the help documentation for this
function and follow along with the explanation below.

• This time we passed the column names id and day to the ... argument. This tells R
to consider any rows that have the same value of id AND day to be duplicates – even if
they have different values in their other columns.

• The .keep_all argument tells R to return all of the columns in df to us – not just the
columns that we are testing for uniqueness (i.e., id and day).

27.4.4 Partial duplicate rows - add tag

we can tag partial duplicate rows in a similar fashion to the way we tagged complete duplicate
rows above:

410



df %>%
group_by(id, day) %>%
mutate(

count = row_number(), # Counts rows by group
dup = count > 1 # TRUE if there is more than one row per group

)

# A tibble: 12 x 5
# Groups: id, day [9]

id day x count dup
<dbl> <dbl> <dbl> <int> <lgl>

1 1 1 1 1 FALSE
2 1 2 11 1 FALSE
3 2 1 12 1 FALSE
4 2 2 13 1 FALSE
5 2 2 14 2 TRUE
6 3 1 12 1 FALSE
7 3 1 12 2 TRUE
8 3 2 13 1 FALSE
9 4 1 13 1 FALSE
10 5 1 10 1 FALSE
11 5 2 11 1 FALSE
12 5 1 10 2 TRUE

27.4.5 Count the number of duplicates

Finally, sometimes it can be useful to get a count of the number of duplicate rows. The code
below returns a data frame that summarizes the number of rows that contain duplicate values
for id and day, and what those duplicate values are.

df %>%
group_by(id, day) %>%
filter(n() > 1) %>%
count()

# A tibble: 3 x 3
# Groups: id, day [3]

id day n
<dbl> <dbl> <int>

1 2 2 2

411



2 3 1 2
3 5 1 2

27.4.6 What to do about duplicates

Finding duplicates is only half the battle. After finding them, you have to decide what to do
about them. In some ways it’s hard to give clear-cut advice on this because different situations
require different decisions. However, here are some things you may want to consider:

• If two or more rows are complete duplicates, then the additional rows provide no ad-
ditional information. I have a hard time thinking of a scenario where dropping them
would be a problem. Additionally, because they are completely identical, it doesn’t
matter which row you drop.

• If have two more rows that are partial duplicates, then you will want to look for obvious
errors in the other variables. When you have two rows that are partial duplicates, and
one row has very obvious errors in it, then keeping the row without the obvious errors is
usually the correct decision. Having said that, you should meticulously document which
rows you dropped and why, and make that information known to anyone consuming the
results of your analysis.

• When there are no obvious errors, deciding which rows to keep and which to drop can
be really tricky. In this situation the best advice I can give is to be systematic in your
approach. What I mean by that is to choose a strategy that seems least likely to introduce
bias into your data and then apply that strategy consistently throughout your data. So,
something like always keeping the first row among a group of duplicate rows. However,
keep in mind that if rows are ordered by data, this strategy could easily introduce bias.
In that case, some other strategy may be more appropriate. And again, you should
meticulously document which rows you dropped and why, and make that information
known to anyone consuming the results of your analysis.

• Finally, I can definitively tell you a strategy that you should never use. That is, you
should never pick and choose, or even give the appearance of picking and choosing, rows
with values that are aligned with the results you want to see. I hope the unethical nature
of this strategy is blatantly obvious to you.

Congratulations! � At this point, you are well-versed in all of the dplyr verbs. More impor-
tantly, you now have a foundation of tools you can call upon to complete the many of basic
data management tasks that you will encounter. In the rest of the data management part of
the book we will build on these tools, and learn some new tools, we can use to solve more
complex data management problems.

412



28 Working with Dates

In epidemiology, it isn’t uncommon at all for the data we are analyzing to include important
date values. Some common examples include date of birth, hospital admission date, date of
symptom onset, and follow-up dates in longitudinal studies. In this chapter, we will learn about
two new vector types that we can use to work with date and date-time data. Additionally, we
will learn about a new package, lubridate, which provides a robust set of functions designed
specifically for working with date and date-time data in R.

28.1 Date vector types

In R, there are two different vector types that we can use to store, and work with, dates. They
are:

� date vectors for working with date values. By default, R will display dates in this format:
4-digit year, a dash, 2-digit month, a dash, and 2-digit day. For example, the date that the
University of Florida won its last national football championship, January 8, 2009, looks like
this as a date in R: 2009-01-08. It’s about time for another championship!

�� POSIXct vectors for working with date-time values. Date-time values are just dates with
time values added to them. By default, R will display date-times in this format: 4-digit year,
a dash, 2-digit month, a dash, 2-digit day, a space, 2-digit hour value, a colon, 2-digit minute
value, a colon, and 2-digit second value. So, let’s say that kickoff for the previously mentioned
national championship game was at 8:00 PM local time. In R, that looks like this: 2009-01-08
20:00:00.

Note

You were probably pretty confused when you saw the 20:00:00 above if you’ve never used
24-hour clock time (also called military time) before. We’ll let you read the details on
Wikipedia, but here’s a couple of simple tips to get you started working with 24-hour
time. Any time before noon is written the same as you would write it if you were using
12-hour (AM/PM) time. So, 8:00 AM would be 8:00 in 24-hour time. After noon, just
add 12 to whatever time you want to write. So, 1:00 PM is 13:00 (1 + 12 = 13) and 8:00
PM is 20:00 (8 + 12 = 20).

413

https://en.wikipedia.org/wiki/24-hour_clock


Note

Base R does not have a built-in vector type for working with pure time (as opposed to
date-time) values. If you need to work with pure time values only, then the hms package
is what you want to try first.

In general, we try to work with date values, rather than date-time values, whenever possible.
Working with date-time values is slightly more complicated than working with date values, and
we rarely have time data anyway. However, that doesn’t stop some R functions from trying
to store dates as POSIXct vectors by default, which can sometimes cause unexpected errors
in our R code. But, don’t worry. We are going to show you how to coerce POSIXct vectors
to date vectors below.

Before we go any further, let’s go ahead and look at some data that we can use to help us
learn to work with dates in R.

You can click here to download the data and import it into your R session, if you want to
follow along.

Rows: 10 Columns: 6
-- Column specification --------------------------------------------------------
Delimiter: ","
chr (4): name_first, name_last, dob_typical, dob_long
dttm (1): dob_actual
date (1): dob_default

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.

# A tibble: 10 x 6
name_first name_last dob_actual dob_default dob_typical dob_long
<chr> <chr> <dttm> <date> <chr> <chr>

1 Nathaniel Watts 1996-03-04 16:59:18 1996-03-04 03/04/1996 March 04, 1~
2 Sophia Gomez 1998-11-21 21:52:08 1998-11-21 11/21/1998 November 21~
3 Emmett Steele 1994-09-03 23:26:19 1994-09-03 09/03/1994 September 0~
4 Levi Sanchez 1996-08-03 17:18:50 1996-08-03 08/03/1996 August 03, ~
5 August Murray 1980-06-13 18:27:13 1980-06-13 06/13/1980 June 13, 19~
6 Juan Clark 1996-12-09 05:33:24 1996-12-08 12/08/1996 December 08~
7 Lilly Levy 1992-11-27 17:36:43 1992-11-27 11/27/1992 November 27~
8 Natalie Rogers 1983-04-27 23:31:56 1983-04-27 04/27/1983 April 27, 1~
9 Solomon Harding 1988-06-28 16:13:46 1988-06-28 06/28/1988 June 28, 19~
10 Olivia House 1997-08-02 22:09:50 1997-08-02 08/02/1997 August 02, ~

414

https://hms.tidyverse.org/
https://github.com/brad-cannell/r4epi/blob/master/data/birth_dates.csv
https://github.com/brad-cannell/r4epi/blob/master/data/birth_dates.csv


�Here’s what we did above:

• we used the read_csv() function to import a csv file containing simulated data into R.

• The simulated data contains the first name, last name, and date of birth for 10 fictitious
people.

• In this data, date of birth is recorded in the four most common formats that we typically
come across.

1. dob_actual is each person’s actual date of birth measured down to the second. Notice
that this column’s type is <S3: POSIXct>. Again, that means that this vector contains
date-time values. Also, notice that the format of these values matches the format we
discussed for date-time vectors above: 4-digit year, a dash, 2-digit month, a dash, 2-digit
day, a space, 2-digit hour value, a colon, 2-digit minute value, a colon, and 2-digit second
value.

2. dob_default is each person’s date of birth without their time of birth included. Notice
that this column’s type is <date>. Also, notice that the format of these values matches
the format we discussed for date vectors above: 4-digit year, a dash, 2-digit month, a
dash, and 2-digit day.

3. dob_typical is each person’s date of birth written in the format that is probably most
often used in the United States: 2-digit month, a forward slash, 2-digit day, a forward
slash, and 4-digit year.

4. dob_long is each person’s date of birth written out in a sometimes-used long format.
That is, the month name written out, 2-digit day, a comma, and 4-digit year.

• Notice that readr did a good job of importing dob_actual and dob_default as date-
time and date values respectively. It did so because the values were stored in the csv file
in the default format that R expects to see date-time and date values have.

• Notice that readr imported dob_typical and dob_long as character strings. It does so
because the values in these columns were not stored in a format that R recognizes as a
date or date-time.

28.2 Dates under the hood

Under the hood, R actually stores dates as numbers. Specifically, the number of days before
or after January 1st, 1970, 00:00:00 UTC.

415



Note

Why January 1st, 1970, 00:00:00 UTC? Well, it’s not really important to know the
answer for the purposes of this book, or for programming in R, but Kristina Hill (a
former student) figured out the answer for those of you who are curious. New Year’s Day
in 1970 was an easy date for early Unix developers to use as a uniform date for the start
of time. So, January 1st, 1970 at 00:00:00 UTC is referred to as the “Unix epoch”, and
it’s a popular epoch used by many (but not all) software platforms. The use of any epoch
date is mostly arbitrary, and this one leads to some interesting situations (like the Year
2038 Problem and this little issue that Apple had a few years ago (yikes!). Generally
speaking, though, this is in no way likely to impact your day-to-day programming in R,
or your life at all (unless you happen to also be a software developer in a platform that
uses this epoch date).

For example, let’s use base R’s as.Date() function to create a date value from the string
“2000-01-01”.

as.Date("2000-01-01")

[1] "2000-01-01"

On the surface, it doesn’t look like anything happened. However, we can use base R’s
unclass() function to see R’s internal integer representation of the date.

416

https://en.wikipedia.org/wiki/Year_2038_problem
https://en.wikipedia.org/wiki/Year_2038_problem
https://www.theguardian.com/technology/2016/feb/12/setting-the-date-to-1-january-1970-will-brick-your-iphone-ipad-or-ipod-touch#:~:text=6%20years%20old-,Setting%20the%20date%20to%201%20January%201970%20will,iPhone%2C%20iPad%20or%20iPod%20touch&text=Manually%20setting%20the%20date%20of,up%20if%20it's%20switched%20off


unclass(as.Date("2000-01-01"))

[1] 10957

Specifically, January 1st, 2000 is apparently 10,957 days after January 1st, 1970. What number
would you expect to be returned if we used the date “1970-01-01”?

unclass(as.Date("1970-01-01"))

[1] 0

What number would you expect to be returned if we used the date “1970-01-02”?

unclass(as.Date("1970-01-02"))

[1] 1

And finally, what number would you expect to be returned if we used the date “1969-12-31”?

unclass(as.Date("1969-12-31"))

[1] -1

This numeric representation of dates also works in the other direction. For example, we can
pass the number 10,958 to the as.Date() function, along with the date origin, and R will
return a human-readable date.

as.Date(10958, origin = "1970-01-01")

[1] "2000-01-02"

You may be wondering why we had to tell R the date origin. After all, didn’t we already
say that the origin is January 1st, 1970? Well, not all programs and programming languages
use the same date origin. For example, SAS uses the date January 1st, 1960 as its origin. In
our experience, this differing origin value can occasionally give us incorrect dates. When that
happens, one option is to strip the date value down to its numeric representation, and then
tell R what the origin was for that numeric representation in the program you are importing
the data from.

For example, if we imported a data set from SAS, we could correctly produce human-readable
dates in the manner shown below:

417



from_sas <- tibble(
date = c(10958, 10959, 10960)

)

from_sas %>%
mutate(new_date = as.Date(date, origin = "1960-01-01"))

# A tibble: 3 x 2
date new_date
<dbl> <date>

1 10958 1990-01-01
2 10959 1990-01-02
3 10960 1990-01-03

Hopefully, you now have a good intuition about how R stores dates under the hood. This
numeric representation of dates is what will allow us to perform calculations with dates later
in the chapter.

28.3 Coercing date-times to dates

As we said above, it’s usually preferable to work with date values instead of date-time values.
Fortunately, converting date-time values to dates is usually really easy. All we need to do is
pass those values to the same as.Date() function we already saw above. For example:

birth_dates %>%
mutate(posix_to_date = as.Date(dob_actual)) %>%
select(dob_actual, posix_to_date)

# A tibble: 10 x 2
dob_actual posix_to_date
<dttm> <date>

1 1996-03-04 16:59:18 1996-03-04
2 1998-11-21 21:52:08 1998-11-21
3 1994-09-03 23:26:19 1994-09-03
4 1996-08-03 17:18:50 1996-08-03
5 1980-06-13 18:27:13 1980-06-13
6 1996-12-09 05:33:24 1996-12-09
7 1992-11-27 17:36:43 1992-11-27
8 1983-04-27 23:31:56 1983-04-27

418



9 1988-06-28 16:13:46 1988-06-28
10 1997-08-02 22:09:50 1997-08-02

�Here’s what we did above:

• we created a new column in the birth_dates data frame called posix_to_date.

• we used the as.Date() function to coerce the date-time values in dob_actual to dates.
In other words, we dropped the time part of the date-time. Make sure to capitalize the
“D” in as.Date().

• we used the select() function to keep only the columns we are interested in comparing
side-by-side in our output.

• Notice that dob_actual’s column type is still <S3: POSIXct>, but posix_to_date’s
column type is <date>.

28.4 Coercing character strings to dates

Converting character strings to dates can be slightly more complicated than converting date-
times to dates. This is because we have to explicitly tell R which characters in the character
string correspond to each date component. For example, let’s say we have a date value of
04-05-06. Is that April 5th, 2006? Is it April 5th, 1906? Or perhaps it’s May 6th, 2004?

we need to use a series of special symbols to tell R which characters in the character string
correspond to each date component. We’ll list some of the most common ones first and then
show you how to use them. The examples below assume that date each symbol is being applied
to is 2000-01-15.

tribble(
~Symbol, ~Description, ~Example,
"%a", "Abbreviated weekday name", "Sat",
"%A", "Full weekday name", "Saturday",
"%b", "Abbreviated month name", "Jan",
"%B", "Full month name", "January",
"%d", "Day of the month as a number (01–31)", "15",
"%m", "Month as a number", "01",
"%u", "Weekday as a number (1–7, Monday is 1)", "6",
"%U", "Week of the year as a number (00–53) using Sunday as the first day 1 of the week", "02",
"%y", "Year without century (00-99)", "00",
"%Y", "Year with century", "2000"

) %>%
knitr::kable()

419



Symbol Description Example
%a Abbreviated weekday name Sat
%A Full weekday name Saturday
%b Abbreviated month name Jan
%B Full month name January
%d Day of the month as a number (01–31) 15
%m Month as a number 01
%u Weekday as a number (1–7, Monday is 1) 6
%U Week of the year as a number (00–53) using Sunday as the first day 1 of

the week
02

%y Year without century (00-99) 00
%Y Year with century 2000

Now that we have a list of useful symbols that we can use to communicate with R, let’s take
another look at our birth date data.

birth_dates

# A tibble: 10 x 6
name_first name_last dob_actual dob_default dob_typical dob_long
<chr> <chr> <dttm> <date> <chr> <chr>

1 Nathaniel Watts 1996-03-04 16:59:18 1996-03-04 03/04/1996 March 04, 1~
2 Sophia Gomez 1998-11-21 21:52:08 1998-11-21 11/21/1998 November 21~
3 Emmett Steele 1994-09-03 23:26:19 1994-09-03 09/03/1994 September 0~
4 Levi Sanchez 1996-08-03 17:18:50 1996-08-03 08/03/1996 August 03, ~
5 August Murray 1980-06-13 18:27:13 1980-06-13 06/13/1980 June 13, 19~
6 Juan Clark 1996-12-09 05:33:24 1996-12-08 12/08/1996 December 08~
7 Lilly Levy 1992-11-27 17:36:43 1992-11-27 11/27/1992 November 27~
8 Natalie Rogers 1983-04-27 23:31:56 1983-04-27 04/27/1983 April 27, 1~
9 Solomon Harding 1988-06-28 16:13:46 1988-06-28 06/28/1988 June 28, 19~
10 Olivia House 1997-08-02 22:09:50 1997-08-02 08/02/1997 August 02, ~

For our first example, let’s try converting the character strings stored in the dob_typical to
date values. Let’ start by passing the values to as.Date() exactly as we did above and see
what happens:

birth_dates %>%
mutate(dob_typical_to_date = as.Date(dob_typical)) %>%
select(dob_typical, dob_typical_to_date)

420



# A tibble: 10 x 2
dob_typical dob_typical_to_date
<chr> <date>

1 03/04/1996 0003-04-19
2 11/21/1998 NA
3 09/03/1994 0009-03-19
4 08/03/1996 0008-03-19
5 06/13/1980 NA
6 12/08/1996 0012-08-19
7 11/27/1992 NA
8 04/27/1983 NA
9 06/28/1988 NA
10 08/02/1997 0008-02-19

This is definitely not the result we wanted, right? Why didn’t it work? Well, R was looking for
the values in dob_typical to have the format 4-digit year, a dash, 2-digit month, a dash, and
2-digit day. In reality, dob_typical has the format 2-digit month, a forward slash, 2-digit day,
a forward slash, and 4-digit year. Now, all we have to do is tell R how to read this character
string as a date using some of the symbols we learned about in the table above.

Let’s try again:

birth_dates %>%
mutate(dob_typical_to_date = as.Date(dob_typical, format = "%m %d %Y")) %>%
select(dob_typical, dob_typical_to_date)

# A tibble: 10 x 2
dob_typical dob_typical_to_date
<chr> <date>

1 03/04/1996 NA
2 11/21/1998 NA
3 09/03/1994 NA
4 08/03/1996 NA
5 06/13/1980 NA
6 12/08/1996 NA
7 11/27/1992 NA
8 04/27/1983 NA
9 06/28/1988 NA
10 08/02/1997 NA

Wait, what? We told R that the values were 2-digit month (%m), 2-digit day (%d), and 4-digit
year (%Y). Why didn’t it work this time? It didn’t work because we didn’t pass the forward

421



slashes to the format argument. Yes, it’s that literal. We even have to tell R that there are
symbols mixed in with our date values in the character string we want to convert to a date.

Let’s try one more time:

birth_dates %>%
mutate(dob_typical_to_date = as.Date(dob_typical, format = "%m/%d/%Y")) %>%
select(dob_typical, dob_typical_to_date)

# A tibble: 10 x 2
dob_typical dob_typical_to_date
<chr> <date>

1 03/04/1996 1996-03-04
2 11/21/1998 1998-11-21
3 09/03/1994 1994-09-03
4 08/03/1996 1996-08-03
5 06/13/1980 1980-06-13
6 12/08/1996 1996-12-08
7 11/27/1992 1992-11-27
8 04/27/1983 1983-04-27
9 06/28/1988 1988-06-28
10 08/02/1997 1997-08-02

�Here’s what we did above:

• we created a new column in the birth_dates data frame called dob_typical_to_date.

• we used the as.Date() function to coerce the character string values in dob_typical to
dates.

• we did so by passing the value "%m/%d/%Y" to the format argument of the as.Date()
function. These symbols tell R to read the character strings in dob_typical as 2-digit
month (%m), a forward slash (/), 2-digit day (%d), a forward slash (/), and 4-digit year
(%Y).

• we used the select() function to keep only the columns we are interested in comparing
side-by-side in our output.

• Notice that dob_typical’s column type is still character (<chr>), but dob_typical_to_date’s
column type is <date>.

Let’s try one more example, just to make sure we’ve got this down. Take a look at the
dob_long column. What value will we need to pass to as.Date()’s format argument in order
to convert these character strings to dates?

422



select(birth_dates, dob_long)

# A tibble: 10 x 1
dob_long
<chr>

1 March 04, 1996
2 November 21, 1998
3 September 03, 1994
4 August 03, 1996
5 June 13, 1980
6 December 08, 1996
7 November 27, 1992
8 April 27, 1983
9 June 28, 1988
10 August 02, 1997

Did you figure it out? The solution is below:

birth_dates %>%
mutate(dob_long_to_date = as.Date(dob_long, format = "%B %d, %Y")) %>%
select(dob_long, dob_long_to_date)

# A tibble: 10 x 2
dob_long dob_long_to_date
<chr> <date>

1 March 04, 1996 1996-03-04
2 November 21, 1998 1998-11-21
3 September 03, 1994 1994-09-03
4 August 03, 1996 1996-08-03
5 June 13, 1980 1980-06-13
6 December 08, 1996 1996-12-08
7 November 27, 1992 1992-11-27
8 April 27, 1983 1983-04-27
9 June 28, 1988 1988-06-28
10 August 02, 1997 1997-08-02

�Here’s what we did above:

• we created a new column in the birth_dates data frame called dob_long_to_date.

423



• we used the as.Date() function to coerce the character string values in dob_long to
dates.

• we did so by passing the value "%B %d, %Y" to the format argument of the as.Date()
function. These symbols tell R to read the character strings in dob_long as full month
name (%B), 2-digit day (%d), a comma (,), and 4-digit year (%Y).

• we used the select() function to keep only the columns we are interested in comparing
side-by-side in our output.

• Notice that dob_long’s column type is still character (<chr>), but dob_long_to_date’s
column type is <date>.

28.5 Change the appearance of dates with format()

So, far we’ve talked about transforming character strings into dates. However, the reverse is
also possible. Meaning, we can transform date values into character strings that we can style
(i.e., format) in just about any way you could possibly want to style a date. For example:

birth_dates %>%
mutate(dob_abbreviated = format(dob_actual, "%d %b %y")) %>%
select(dob_actual, dob_abbreviated)

# A tibble: 10 x 2
dob_actual dob_abbreviated
<dttm> <chr>

1 1996-03-04 16:59:18 04 Mar 96
2 1998-11-21 21:52:08 21 Nov 98
3 1994-09-03 23:26:19 03 Sep 94
4 1996-08-03 17:18:50 03 Aug 96
5 1980-06-13 18:27:13 13 Jun 80
6 1996-12-09 05:33:24 09 Dec 96
7 1992-11-27 17:36:43 27 Nov 92
8 1983-04-27 23:31:56 27 Apr 83
9 1988-06-28 16:13:46 28 Jun 88
10 1997-08-02 22:09:50 02 Aug 97

�Here’s what we did above:

• we created a new column in the birth_dates data frame called dob_abbreviated.

• we used the format() function to coerce the date values in dob_actual to character
string values in dob_abbreviated.

424



• we did so by passing the value "%d %b %y" to the ... argument of the format()
function. These symbols tell R to create a character string as 2-digit day (%d), a space
(" "), abbreviated month name (%b), a space (" "), and 2-digit year (%y).

• we used the select() function to keep only the columns we are interested in comparing
side-by-side in our output.

• Notice that dob_actual’s column type is still date_time (<S3: POSIXct>), but
dob_abbreviated’s column type is character (<chr>). So, while dob_abbreviated looks
like a date to us, it is no longer a date value to R. In other words, dob_abbreviated
doesn’t have an integer representation under the hood. It is simply a character string.

28.6 Some useful built-in dates

Base R actually includes a few useful built-in dates that we can use. They can often be useful
when doing calculations with dates. Here are a few examples:

28.6.1 Today’s date

Sys.Date()

[1] "2025-06-12"

lubridate::today()

[1] "2025-06-12"

These functions can be useful for calculating any length of time up to today. For example,
your age today is just the length of time that spans between your birth date and today.

28.6.2 Today’s date-time

Sys.time()

[1] "2025-06-12 20:14:25 CDT"

425



lubridate::now()

[1] "2025-06-12 20:14:25 CDT"

Because these functions also return the current time, they can be useful for timing how long
it takes your R code to run. As we’ve said many times, there is typically multiple ways to
accomplish a given task in R. Sometimes, the difference between any to ways to accomplish the
task is basically just a matter of preference. However, sometimes one way can be much faster
than another way. All the examples we’ve seen so far in this book take a trivial amount of time
to run – usually less than a second. However, we have written R programs that took several
minutes to several hours to complete. For example, complex data simulations and multiple
imputation procedures can both take a long time to run. In such cases, we will sometimes
check to see if there any significant performance differences between two different approaches
to accomplishing the coding task.

As a silly example to show you how this works, let’s generate 1,000,000 random numbers.

set.seed(703)
rand_mill <- rnorm(1000000)

Now, let’s find the mean value of those numbers two different ways, and check to see if there
is any time difference between the two:

# Save the start time
start <- lubridate::now()
sum <- sum(rand_mill)
length <- length(rand_mill)
mean <- sum / length
mean

[1] 0.0009259691

# Save the stop time
stop <- lubridate::now()

stop - start

Time difference of 0.002154112 secs

426



rm(mean)

So, finding the mean this way took less than a second. Let’s see how long using the mean()
function takes:

# Save the start time
start <- lubridate::now()
mean(rand_mill)

[1] 0.0009259691

# Save the stop time
stop <- lubridate::now()

stop - start

Time difference of 0.001874924 secs

Although both methods above took less than a second to complete the calculations we were
interested in, the second method (i.e., using the mean() function) took only about a third
as as much time as the first. Again, it obviously doesn’t matter in this scenario, but doing
these kinds of checks can be useful when calculations take much longer. For example, that
time savings we saw above would be pretty important if we were comparing two methods to
accomplish a task where the longer method took an hour to complete and the shorter method
took a third as much time (About 20 minutes).

28.6.3 Character vector of full month names

month.name

[1] "January" "February" "March" "April" "May" "June"
[7] "July" "August" "September" "October" "November" "December"

28.6.4 Character vector of abbreviated month names

427



month.abb

[1] "Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul" "Aug" "Sep" "Oct" "Nov" "Dec"

month.name and month.abb aren’t functions. They don’t do anything. Rather, they are just
saved values that can save us some typing if you happen to be working with data that requires
you create variables, or perform calculations, by month.

28.6.5 Creating a vector containing a sequence of dates

In the same way that we can simulate a sequence of numbers using the seq() function, we can
simulate a sequence of dates using the seq.Date() function. We sometimes find this function
useful for simulating data (including some of the data used in this book), and for filling in
missing dates in longitudinal data. For example, we can use the seq.Date() function to return
a vector of dates that includes all days between January 1st, 2020 and January 15th, 2020 like
this:

seq.Date(
from = as.Date("2020-01-01"),
to = as.Date("2020-01-15"),
by = "days"

)

[1] "2020-01-01" "2020-01-02" "2020-01-03" "2020-01-04" "2020-01-05"
[6] "2020-01-06" "2020-01-07" "2020-01-08" "2020-01-09" "2020-01-10"
[11] "2020-01-11" "2020-01-12" "2020-01-13" "2020-01-14" "2020-01-15"

28.7 Calculating date intervals

So far, we’ve learned how to create and format dates in R. However, the real value in being able
to coerce character strings to date values is that doing so allows us to perform calculations with
the dates that we could not perform with the character strings. In our experience, calculating
intervals of time between dates is probably the most common type of calculation we will want
to perform.

Before we get into some examples, we are going to drop some of the columns from our
birth_dates data frame because we won’t need them anymore.

428



ages <- birth_dates %>%
select(name_first, dob = dob_default) %>%
print()

# A tibble: 10 x 2
name_first dob
<chr> <date>

1 Nathaniel 1996-03-04
2 Sophia 1998-11-21
3 Emmett 1994-09-03
4 Levi 1996-08-03
5 August 1980-06-13
6 Juan 1996-12-08
7 Lilly 1992-11-27
8 Natalie 1983-04-27
9 Solomon 1988-06-28
10 Olivia 1997-08-02

�Here’s what we did above:

• we created a new data frame called ages by subsetting the birth_dates data frame.

• we used the select() function to keep only the name_first and dob_default columns
from birth_dates. We used a name-value pair (dob = dob_default) inside the
select() function to rename dob_default to dob.

Next, let’s create a variable in our data frame that is equal to today’s date. In reality, this
would be a great time to use Sys.Date() to ask R to return today’s date.

ages %>%
mutate(today = Sys.Date())

However, we are not going to do that here, because it would cause the value of the today
variable to update every time we update the book. That would make it challenging to write
about the results we get. So, we’re going to pretend that today is May 7th, 2020. We’ll add
that to our data frame like so:

ages <- ages %>%
mutate(today = as.Date("2020-05-07")) %>%
print()

429



# A tibble: 10 x 3
name_first dob today
<chr> <date> <date>

1 Nathaniel 1996-03-04 2020-05-07
2 Sophia 1998-11-21 2020-05-07
3 Emmett 1994-09-03 2020-05-07
4 Levi 1996-08-03 2020-05-07
5 August 1980-06-13 2020-05-07
6 Juan 1996-12-08 2020-05-07
7 Lilly 1992-11-27 2020-05-07
8 Natalie 1983-04-27 2020-05-07
9 Solomon 1988-06-28 2020-05-07
10 Olivia 1997-08-02 2020-05-07

�Here’s what we did above:

• we created a new column in the ages data frame called today.

• we made set the value of the today column to May 7th, 2020 by passing the value
"2020-05-07" to the as.Date() function.

28.7.1 Calculate age as the difference in time between dob and today

Calculating age from date of birth is a pretty common data management task. While you
know what ages are, you probably don’t think much about their calculation. Age is just the
difference between two points in time. The starting point is always the date of birth. However,
because age is constantly changing the end point changes as well. For example, you’re one
day older today than you were yesterday. So, to calculate age, we must always have a start
date (i.e., date of birth) and an end date. In the example below, our end date will be May
7th, 2020.

Once we have those two pieces of information, we can ask R to calculate age for us in a few
different ways. We are going to suggest that you use the method below that uses functions
from the lubridate package. We will show you why soon. However, we want to show you
the base R way of calculating time intervals for comparison, and because a lot of the help
documentation we’ve seen online uses the base R methods shown below.

Let’s go ahead and load the lubridate package now.

library(lubridate)

Next, let’s go ahead and calculate age 3 different ways:

430



ages %>%
mutate(

age_subtraction = today - dob,
age_difftime = difftime(today, dob),
age_lubridate = dob %--% today # lubridate's %--% operator creates a time interval

)

# A tibble: 10 x 6
name_first dob today age_subtraction age_difftime
<chr> <date> <date> <drtn> <drtn>

1 Nathaniel 1996-03-04 2020-05-07 8830 days 8830 days
2 Sophia 1998-11-21 2020-05-07 7838 days 7838 days
3 Emmett 1994-09-03 2020-05-07 9378 days 9378 days
4 Levi 1996-08-03 2020-05-07 8678 days 8678 days
5 August 1980-06-13 2020-05-07 14573 days 14573 days
6 Juan 1996-12-08 2020-05-07 8551 days 8551 days
7 Lilly 1992-11-27 2020-05-07 10023 days 10023 days
8 Natalie 1983-04-27 2020-05-07 13525 days 13525 days
9 Solomon 1988-06-28 2020-05-07 11636 days 11636 days
10 Olivia 1997-08-02 2020-05-07 8314 days 8314 days
# i 1 more variable: age_lubridate <Interval>

�Here’s what we did above:

• we created three new columns in the ages data frame called age_subtraction,
age_difftime, and age_lubridate.

– we created age_subtraction using the subtraction operator (-). Remember, R
stores dates values as numbers under the hood. So, we literally just asked R to
subtract the value for dob from the value for today. The value returned to us was
a vector of time differences measured in days.

– we created age_difftime base R’s difftime() function. The value returned to
us was a vector of time differences measured in days. As you can see, the results
returned by today - dob and difftime(today, dob) are identical.

– we created age_lubridate using lubridate’s time interval operator (%--%). Notice
that the order of dob and today are switched here compared to the previous two
methods. By itself, the %--% operator doesn’t return a time difference value. It
returns a time interval value.

Here is how we can convert the time difference and time interval values to age in years:

431



ages %>%
mutate(

age_subtraction = as.numeric(today - dob) / 365.25,
age_difftime = as.numeric(difftime(today, dob)) / 365.25,
age_lubridate = (dob %--% today) / years(1)

)

# A tibble: 10 x 6
name_first dob today age_subtraction age_difftime age_lubridate
<chr> <date> <date> <dbl> <dbl> <dbl>

1 Nathaniel 1996-03-04 2020-05-07 24.2 24.2 24.2
2 Sophia 1998-11-21 2020-05-07 21.5 21.5 21.5
3 Emmett 1994-09-03 2020-05-07 25.7 25.7 25.7
4 Levi 1996-08-03 2020-05-07 23.8 23.8 23.8
5 August 1980-06-13 2020-05-07 39.9 39.9 39.9
6 Juan 1996-12-08 2020-05-07 23.4 23.4 23.4
7 Lilly 1992-11-27 2020-05-07 27.4 27.4 27.4
8 Natalie 1983-04-27 2020-05-07 37.0 37.0 37.0
9 Solomon 1988-06-28 2020-05-07 31.9 31.9 31.9
10 Olivia 1997-08-02 2020-05-07 22.8 22.8 22.8

�Here’s what we did above:

• we created three new columns in the ages data frame called age_subtraction,
age_difftime, and age_lubridate.

– we used the as.numeric() function to convert the values of age_subtraction from
a time differences to a number – the number of days. We then divided the number
of days by 365.25 – roughly the number of days in a year. The result is age in years.

– we used the as.numeric() function to convert the values of age_difftime from a
time differences to a number – the number of days. We then divided the number of
days by 365.25 – roughly the number of days in a year. The result is age in years.

– Again, the results of the first two methods are identical.

– we asked R to show us the time interval values we created age_lubridate using
lubridate’s time interval operator (%--%) as years of time. We did so by dividing
the time interval into years. Specifically, we used the division operator (/) and
lubridate’s years() function. The value we passed to the years() function was
1. In other words, we asked R to tell us how many 1-year periods are in each time
interval we created with dob %--% today.

– In case you’re wondering, here’s the value returned by the years() function alone:

432



years(1)

[1] "1y 0m 0d 0H 0M 0S"

So, why did the results of the first two methods differ from the results of the third method?
Well, dates are much more complicated to work with than they may seem on the surface.
Specifically, each day doesn’t have exactly 24 hours and each year doesn’t have exactly 365
days. Some have more and some have less – so called, leap years. You can find more details
on the lubridate website, but the short answer is that lubridate’s method gives us a more
precise answer than the first two methods do because it accounts for date complexities in a
different way.

Here’s an example to quickly illustrate what we mean:

Say we want to calculate the number of years between “2017-03-01” and “2018-03-01”.

start <- as.Date("2017-03-01")
end <- as.Date("2018-03-01")

The most meaningful result in this situation is obviously 1 year.

# The base R way
as.numeric(difftime(end, start)) / 365.25

[1] 0.9993155

# The lubridate way
(start %--% end) / years(1)

[1] 1

Notice that lubridate’s method returns exactly one year, but the base R method returns an
approximation of a year.

To further illustrate this point, let’s look at what happens when the time interval includes
a leap year. The year 2020 is a leap year, so let’s calculate the number of years between
“2019-03-01” and “2020-03-01”. Again, a meaningful result here should be a year.

start <- as.Date("2019-03-01")
end <- as.Date("2020-03-01")

433

https://lubridate.tidyverse.org/


# The base R way
as.numeric(difftime(end, start)) / 36

[1] 10.16667

# The lubridate way
(start %--% end) / years(1)

[1] 1

Notice that lubridate’s method returns exactly one year, but the base R method returns an
approximation of a year.

To further illustrate this point, let’s look at what happens when the time interval includes
a leap year. The year 2020 is a leap year, so let’s calculate the number of years between
“2019-03-01” and “2020-03-01”. Again, a meaningful result here should be a year.

start <- as.Date("2019-03-01")
end <- as.Date("2020-03-01")

# The base R way
as.numeric(difftime(end, start)) / 365.25

[1] 1.002053

# The lubridate way
(start %--% end) / years(1)

[1] 1

Once again, the lubridate method returns exactly one year, while the base R method returns
an approximation of a year.

28.7.2 Rounding time intervals

Okay, so now we know how to get age in years, and hopefully I convinced you that using
functions from the lubridate package can help us do so in the most precise way possible.
However, in most situations we would want to take our calculations one step further and
round to whole years. There are actually a couple different ways to do so. For example:

434



ages %>%
mutate(

age_years = (dob %--% today) / years(1),
# If you want the age (in years) as of the person's last birthday
age_last = trunc(age_years),
# If you want to round the age to the nearest year
age_near = round(age_years)

)

# A tibble: 10 x 6
name_first dob today age_years age_last age_near
<chr> <date> <date> <dbl> <dbl> <dbl>

1 Nathaniel 1996-03-04 2020-05-07 24.2 24 24
2 Sophia 1998-11-21 2020-05-07 21.5 21 21
3 Emmett 1994-09-03 2020-05-07 25.7 25 26
4 Levi 1996-08-03 2020-05-07 23.8 23 24
5 August 1980-06-13 2020-05-07 39.9 39 40
6 Juan 1996-12-08 2020-05-07 23.4 23 23
7 Lilly 1992-11-27 2020-05-07 27.4 27 27
8 Natalie 1983-04-27 2020-05-07 37.0 37 37
9 Solomon 1988-06-28 2020-05-07 31.9 31 32
10 Olivia 1997-08-02 2020-05-07 22.8 22 23

�Here’s what we did above:

• We created two new columns in the ages data frame called age_last, and age_near.

– We created age_last using the trunc() (for truncate) function. The value returned
by the trunc() function can be interpreted as each person’s age in years at their
last birthday.

– We created age_near using the round() function. The value returned by the
round() function can be interpreted as each person’s age in years at their near-
est birthday – which may not have occurred yet. This is probably not the value
that you will typically be looking for. So, just make sure you choose the correct
function for the type of rounding you want to do.

As a shortcut, we can use the integer division operator (%/%) to calculate each person’s age in
years at their nearest birthday without the trunc() function.

435



ages %>%
mutate(

# If you want the age (in years) as of the person's last birthday
age_years = (dob %--% today) %/% years(1)

)

# A tibble: 10 x 4
name_first dob today age_years
<chr> <date> <date> <dbl>

1 Nathaniel 1996-03-04 2020-05-07 24
2 Sophia 1998-11-21 2020-05-07 21
3 Emmett 1994-09-03 2020-05-07 25
4 Levi 1996-08-03 2020-05-07 23
5 August 1980-06-13 2020-05-07 39
6 Juan 1996-12-08 2020-05-07 23
7 Lilly 1992-11-27 2020-05-07 27
8 Natalie 1983-04-27 2020-05-07 37
9 Solomon 1988-06-28 2020-05-07 31
10 Olivia 1997-08-02 2020-05-07 22

28.8 Extracting out date parts

Sometimes it can be useful to store parts of a date in separate columns. For example, it
is common to break date values up into their component parts when linking records across
multiple data frames. We will learn how to link data frames a little later in the book. For
now, we’re just going to learn how separate dates into their component parts.

We won’t need the today column anymore, so I’ll go ahead a drop it here.

ages <- ages %>%
select(-today) %>%
print()

# A tibble: 10 x 2
name_first dob
<chr> <date>

1 Nathaniel 1996-03-04
2 Sophia 1998-11-21
3 Emmett 1994-09-03
4 Levi 1996-08-03

436



5 August 1980-06-13
6 Juan 1996-12-08
7 Lilly 1992-11-27
8 Natalie 1983-04-27
9 Solomon 1988-06-28
10 Olivia 1997-08-02

Typically, separating the date will include creating separate columns for the day, the month,
and the year. Fortunately, lubridate includes intuitively named functions that make this really
easy:

ages %>%
mutate(

day = day(dob),
month = month(dob),
year = year(dob)

)

# A tibble: 10 x 5
name_first dob day month year
<chr> <date> <int> <dbl> <dbl>

1 Nathaniel 1996-03-04 4 3 1996
2 Sophia 1998-11-21 21 11 1998
3 Emmett 1994-09-03 3 9 1994
4 Levi 1996-08-03 3 8 1996
5 August 1980-06-13 13 6 1980
6 Juan 1996-12-08 8 12 1996
7 Lilly 1992-11-27 27 11 1992
8 Natalie 1983-04-27 27 4 1983
9 Solomon 1988-06-28 28 6 1988
10 Olivia 1997-08-02 2 8 1997

�Here’s what we did above:

• We created three new columns in the ages data frame called day, month, and year.
We created them by passing the dob column to the x argument of lubridate’s day(),
month(), and year() functions respectively.

lubridate also includes functions for extracting other information from date values. For
example:

437



ages %>%
mutate(

wday = wday(dob),
day_full = wday(dob, label = TRUE, abbr = FALSE),
day_abb = wday(dob, label = TRUE, abbr = TRUE),
week_of_year = week(dob),
week_cdc = epiweek(dob)

)

# A tibble: 10 x 7
name_first dob wday day_full day_abb week_of_year week_cdc
<chr> <date> <dbl> <ord> <ord> <dbl> <dbl>

1 Nathaniel 1996-03-04 2 Monday Mon 10 10
2 Sophia 1998-11-21 7 Saturday Sat 47 46
3 Emmett 1994-09-03 7 Saturday Sat 36 35
4 Levi 1996-08-03 7 Saturday Sat 31 31
5 August 1980-06-13 6 Friday Fri 24 24
6 Juan 1996-12-08 1 Sunday Sun 49 50
7 Lilly 1992-11-27 6 Friday Fri 48 48
8 Natalie 1983-04-27 4 Wednesday Wed 17 17
9 Solomon 1988-06-28 3 Tuesday Tue 26 26

10 Olivia 1997-08-02 7 Saturday Sat 31 31

�Here’s what we did above:

• We created five new columns in the ages data frame called wday, day_abb,day_full,
week_of_year, and week_cdc. We created them by passing the dob column to the x
argument of lubridate’s wday(), week(), and epiweek() functions respectively.

• The wday() function returns the day of the week the given date falls on. By default, the
wday() returns an integer value between 1 and 7. We can adjust the values passed to
wday()’s label and abbr arguments to return full day names (day_full) and abbrevi-
ated day names (day_abb).

• The week() function returns the week of the year the given date falls in. More formally,
the week() function “returns the number of complete seven-day periods that have oc-
curred between the date and January 1st, plus one.” You can see this information by
typing ?week in your console.

• The epiweek() function also returns the week of the year the given date falls in. However,
it calculates the week in a slightly different way. Specifically, “it uses the US CDC version
of epidemiological week. It follows same rules as isoweek() but starts on Sunday. In other
parts of the world the convention is to start epidemiological weeks on Monday, which

438



is the same as isoweek.” Again, you can see this information by typing ?week in your
console.

28.9 Sorting dates

Another really common thing we might want to do with date values is sort them chronologically.
Fortunately, this is really easy to do with dplyr’s arrange() function. If we want to sort our
dates in ascending order (i.e., oldest to most recent), we just pass the date column to the ...
argument of the arrange() function like so:

# Oldest (top) to most recent (bottom)
# Ascending order
ages %>%
arrange(dob)

# A tibble: 10 x 2
name_first dob
<chr> <date>

1 August 1980-06-13
2 Natalie 1983-04-27
3 Solomon 1988-06-28
4 Lilly 1992-11-27
5 Emmett 1994-09-03
6 Nathaniel 1996-03-04
7 Levi 1996-08-03
8 Juan 1996-12-08
9 Olivia 1997-08-02
10 Sophia 1998-11-21

If we want to sort our dates in descending order (i.e., most recent to oldest), we just pass the
date column to the desc() function before passing it to the ... argument of the arrange()
function.

# Most recent (top) to oldest (bottom)
# Descending order
ages %>%
arrange(desc(dob))

# A tibble: 10 x 2
name_first dob

439



<chr> <date>
1 Sophia 1998-11-21
2 Olivia 1997-08-02
3 Juan 1996-12-08
4 Levi 1996-08-03
5 Nathaniel 1996-03-04
6 Emmett 1994-09-03
7 Lilly 1992-11-27
8 Solomon 1988-06-28
9 Natalie 1983-04-27
10 August 1980-06-13

Much of the data we work with in epidemiology includes dates. In fact, it isn’t uncommon
for the length of time that passes between to events to be the primary outcome that we are
trying to understand. Hopefully, the tools we’ve learned in this chapter will give you a solid
foundation for working with dates in R. For more information on dates, including a handy
cheat sheet, I recommend visiting the lubridate website.

440

https://lubridate.tidyverse.org/


29 Working with Character Strings

In previous chapters, we learned how to create character vectors, which can be useful on their
own. We also learned how to coerce character vectors to factor vectors that we can use for
categorical data analysis. However, up to this point, we haven’t done a lot of manipulation of
the values stored inside of the character strings themselves. Sometimes, however, we will need
to manipulate the character string before we can complete other data management tasks or
analysis. Some common examples from my projects include separating character strings into
multiple parts and creating dummy variables from character strings that can take multiple
values. In this chapter, we’ll see some specific example of both, and we’ll learn a few new tools
for working with character strings along the way.

To get started, feel free to download the simulated electronic health record that we will use
in the following examples. Additionally, we will use the readr, dplyr, and stringr packages
in the code below. You will be able to recognize functions from the stringr package because
they will all begin with str_.

library(readr)
library(dplyr)
library(stringr) # All stringr functions begin with "str_"

ehr <- read_rds("ehr.Rds")

ehr

# A tibble: 15 x 6
admit_date name dob address city symptoms
<dttm> <chr> <date> <chr> <chr> <chr>

1 2017-02-01 05:22:30 "Zariah Hernandez" 1944-09-27 3201 ORANGE~ FORT~ "\"Pain~
2 2017-04-08 09:17:17 "Tatum Chavez" 1952-06-12 1117 richmo~ Fort~ "Pain"
3 2017-04-18 09:17:17 "Tatum S Chavez" 1952-06-12 1117 richmo~ Fort~ "Pain"
4 2017-08-31 18:29:34 "Arabella George" 1966-06-15 357 Angle FORT~ "\"Naus~
5 2017-09-13 06:27:07 "Jasper Decker" 1954-05-11 3612 LAURA ~ FORT~ "\"Pain~
6 2017-09-15 18:29:34 "ARABELLA GEORGE" 1966-06-15 357 Angle FORT~ "\"Naus~
7 2017-10-07 06:31:18 "Weston Fox" 2009-08-21 6433 HATCHE~ City~ "Pain"
8 2017-10-08 23:17:18 "Ryan Edwards" 1917-12-10 3201 HORIZO~ City~ <NA>

441

https://github.com/brad-cannell/r4epi/blob/master/data/ehr.Rds
https://github.com/brad-cannell/r4epi/blob/master/data/ehr.Rds


9 2017-10-16 06:31:18 "Weston Fox," 2009-08-21 6433 HATCHE~ City~ "Pain"
10 2017-10-26 23:17:18 "Ryan Edwards " 1917-12-10 3201 HORIZO~ City~ <NA>
11 2017-10-27 18:37:00 "Emma Medrano" 1975-05-01 6301 BEECHC~ KELL~ "\"Naus~
12 2017-12-18 20:47:48 "Ivy Mccann" 1911-06-21 5426 CHILDR~ FORT~ "\"Head~
13 2017-12-20 13:40:04 "Charlee Carroll" 1908-07-22 8190 DUCK C~ City~ "Headac~
14 2017-12-26 20:47:48 "Ivy Mccann" 1911-06-21 5426 CHILDR~ FORT~ "\"Head~
15 2018-01-28 08:49:38 "Kane Martin" 1939-10-27 4929 asbury FORT~ <NA>

�Here’s what we did above:

• we used the read_csv() function to import a .Rds file containing simulated data into R.

• The simulated data contains admission date (admit_date), the patient’s name (name),
the patient’s date of birth (dob), the patient’s address (address), the city the patient
lives in (city), and column that contains the symptoms each patient was experiencing
at admission (symptoms).

• In this data, date of birth is recorded in the four most common formats that I typically
come across.

A common initial question we may need to ask of this kind of data is, “how many unique
people are represented in this data?” Well, there are 15 rows, so a good first guess might be
15 unique people. However, let’s arrange the data by the name column and see if that guess
still looks reasonable.

ehr %>%
group_by(name) %>%
mutate(dup = row_number() > 1) %>%
arrange(name) %>%
select(name, dup, dob, address, city)

# A tibble: 15 x 5
# Groups: name [15]

name dup dob address city
<chr> <lgl> <date> <chr> <chr>

1 "ARABELLA GEORGE" FALSE 1966-06-15 357 Angle FORT WORTH
2 "Arabella George" FALSE 1966-06-15 357 Angle FORT WORTH
3 "Charlee Carroll" FALSE 1908-07-22 8190 DUCK CREEK CT City of Fort Worth
4 "Emma Medrano" FALSE 1975-05-01 6301 BEECHCREEK DR KELLER
5 "Ivy Mccann" FALSE 1911-06-21 5426 CHILDRESS ST FORT WORTH
6 "Ivy Mccann" FALSE 1911-06-21 5426 CHILDRESS ST FORT WORTH
7 "Jasper Decker" FALSE 1954-05-11 3612 LAURA ANNE CT. FORT WORTH
8 "Kane Martin" FALSE 1939-10-27 4929 asbury FORT WORTH

442



9 "Ryan Edwards" FALSE 1917-12-10 3201 HORIZON PL City of Saginaw
10 "Ryan Edwards " FALSE 1917-12-10 3201 HORIZON PL City of Saginaw
11 "Tatum Chavez" FALSE 1952-06-12 1117 richmond ave Fort Worth
12 "Tatum S Chavez" FALSE 1952-06-12 1117 richmond ave Fort Worth
13 "Weston Fox" FALSE 2009-08-21 6433 HATCHER ST City of Fort Worth
14 "Weston Fox," FALSE 2009-08-21 6433 HATCHER ST City of Fort Worth
15 "Zariah Hernandez" FALSE 1944-09-27 3201 ORANGE AVE FORT WORTH

Clearly, some of these people are the same. However, little data entry discrepancies in their
name values would prevent us from calculating the number of unique people in a programmatic
way. Let’s take a closer look at the values in the name column and see if we can figure out
exactly what these data entry discrepancies are:

ehr %>%
arrange(name) %>%
pull(name)

[1] "ARABELLA GEORGE" "Arabella George" "Charlee Carroll" "Emma Medrano"
[5] "Ivy Mccann" "Ivy Mccann" "Jasper Decker" "Kane Martin"
[9] "Ryan Edwards" "Ryan Edwards " "Tatum Chavez" "Tatum S Chavez"
[13] "Weston Fox" "Weston Fox," "Zariah Hernandez"

�Here’s what we did above:

• we dplyr’s pull() function to return the name column as a character vector. Doing
so makes it easier to see some of the discrepancies in the way the patient’s names were
entered into the ehr.

• Notice that Arabella George’s name is written in title case one time and written in all
caps another time. Remember that R is case sensitive. So, these two values – “Arabella
George” and “ARABELLA GEORGE” – are different values to R.

• Notice that in one instance of Ivy Mccann’s name someone accidently typed two spaces
between her first and last name. These two values – “Ivy Mccann” and “Ivy Mccann” –
are different values to R.

• Notice that in one instance of Ryan Edwards’ name someone accidently typed an extra
space after his last name. These two values – “Ryan Edwards” and “Ryan Edwards” –
are different values to R.

• Notice that in one instance of Tatum Chavez’s name was entered into the ehr with his
middle initial on one instance. These two values – “Tatum Chavez” and “Tatum S
Chavez” – are different values to R.

443



• Notice that Weston Fox’s name was entered into the ehr with a comma immediately
following his last name on one instance. These two values – “Weston Fox” and “Weston
Fox,” – are different values to R.

29.1 Coerce to lowercase

A good place to start cleaning these character strings is by coercing them all to lowercase.
We’ve already used base R’s tolower() function a couple of times before. So, you may have
already guessed how to complete this task. However, before moving on to coercing all the
names in our ehr data to lowercase, we want to show you some of the other functions that the
stringr package contains for changing the case of character strings. For example:

29.1.1 Lowercase

ehr %>%
arrange(name) %>%
pull(name) %>%
str_to_lower()

[1] "arabella george" "arabella george" "charlee carroll" "emma medrano"
[5] "ivy mccann" "ivy mccann" "jasper decker" "kane martin"
[9] "ryan edwards" "ryan edwards " "tatum chavez" "tatum s chavez"
[13] "weston fox" "weston fox," "zariah hernandez"

29.1.2 Upper case

ehr %>%
arrange(name) %>%
pull(name) %>%
str_to_upper()

[1] "ARABELLA GEORGE" "ARABELLA GEORGE" "CHARLEE CARROLL" "EMMA MEDRANO"
[5] "IVY MCCANN" "IVY MCCANN" "JASPER DECKER" "KANE MARTIN"
[9] "RYAN EDWARDS" "RYAN EDWARDS " "TATUM CHAVEZ" "TATUM S CHAVEZ"
[13] "WESTON FOX" "WESTON FOX," "ZARIAH HERNANDEZ"

444



29.1.3 Title case

ehr %>%
arrange(name) %>%
pull(name) %>%
str_to_title()

[1] "Arabella George" "Arabella George" "Charlee Carroll" "Emma Medrano"
[5] "Ivy Mccann" "Ivy Mccann" "Jasper Decker" "Kane Martin"
[9] "Ryan Edwards" "Ryan Edwards " "Tatum Chavez" "Tatum S Chavez"
[13] "Weston Fox" "Weston Fox," "Zariah Hernandez"

29.1.4 Sentence case

ehr %>%
arrange(name) %>%
pull(name) %>%
str_to_sentence()

[1] "Arabella george" "Arabella george" "Charlee carroll" "Emma medrano"
[5] "Ivy mccann" "Ivy mccann" "Jasper decker" "Kane martin"
[9] "Ryan edwards" "Ryan edwards " "Tatum chavez" "Tatum s chavez"
[13] "Weston fox" "Weston fox," "Zariah hernandez"

Each of the function above can come in handy from time-to-time. So, you may just want to
keep them in your back pocket. Let’s go ahead and use the str_to_lower() function now as
the first step in cleaning our data:

ehr <- ehr %>%
mutate(name = str_to_lower(name)) %>%
print()

# A tibble: 15 x 6
admit_date name dob address city symptoms
<dttm> <chr> <date> <chr> <chr> <chr>

1 2017-02-01 05:22:30 "zariah hernandez" 1944-09-27 3201 ORANGE~ FORT~ "\"Pain~
2 2017-04-08 09:17:17 "tatum chavez" 1952-06-12 1117 richmo~ Fort~ "Pain"
3 2017-04-18 09:17:17 "tatum s chavez" 1952-06-12 1117 richmo~ Fort~ "Pain"

445



4 2017-08-31 18:29:34 "arabella george" 1966-06-15 357 Angle FORT~ "\"Naus~
5 2017-09-13 06:27:07 "jasper decker" 1954-05-11 3612 LAURA ~ FORT~ "\"Pain~
6 2017-09-15 18:29:34 "arabella george" 1966-06-15 357 Angle FORT~ "\"Naus~
7 2017-10-07 06:31:18 "weston fox" 2009-08-21 6433 HATCHE~ City~ "Pain"
8 2017-10-08 23:17:18 "ryan edwards" 1917-12-10 3201 HORIZO~ City~ <NA>
9 2017-10-16 06:31:18 "weston fox," 2009-08-21 6433 HATCHE~ City~ "Pain"
10 2017-10-26 23:17:18 "ryan edwards " 1917-12-10 3201 HORIZO~ City~ <NA>
11 2017-10-27 18:37:00 "emma medrano" 1975-05-01 6301 BEECHC~ KELL~ "\"Naus~
12 2017-12-18 20:47:48 "ivy mccann" 1911-06-21 5426 CHILDR~ FORT~ "\"Head~
13 2017-12-20 13:40:04 "charlee carroll" 1908-07-22 8190 DUCK C~ City~ "Headac~
14 2017-12-26 20:47:48 "ivy mccann" 1911-06-21 5426 CHILDR~ FORT~ "\"Head~
15 2018-01-28 08:49:38 "kane martin" 1939-10-27 4929 asbury FORT~ <NA>

�Here’s what we did above:

• we used stringr’s str_to_lower() function to coerce all the letters in the name column
to lowercase.

Now, let’s check and see how many unique people R finds in our data?

ehr %>%
group_by(name) %>%
mutate(dup = row_number() > 1) %>%
arrange(name) %>%
select(name, dup, dob, address, city)

# A tibble: 15 x 5
# Groups: name [14]

name dup dob address city
<chr> <lgl> <date> <chr> <chr>

1 "arabella george" FALSE 1966-06-15 357 Angle FORT WORTH
2 "arabella george" TRUE 1966-06-15 357 Angle FORT WORTH
3 "charlee carroll" FALSE 1908-07-22 8190 DUCK CREEK CT City of Fort Worth
4 "emma medrano" FALSE 1975-05-01 6301 BEECHCREEK DR KELLER
5 "ivy mccann" FALSE 1911-06-21 5426 CHILDRESS ST FORT WORTH
6 "ivy mccann" FALSE 1911-06-21 5426 CHILDRESS ST FORT WORTH
7 "jasper decker" FALSE 1954-05-11 3612 LAURA ANNE CT. FORT WORTH
8 "kane martin" FALSE 1939-10-27 4929 asbury FORT WORTH
9 "ryan edwards" FALSE 1917-12-10 3201 HORIZON PL City of Saginaw
10 "ryan edwards " FALSE 1917-12-10 3201 HORIZON PL City of Saginaw
11 "tatum chavez" FALSE 1952-06-12 1117 richmond ave Fort Worth
12 "tatum s chavez" FALSE 1952-06-12 1117 richmond ave Fort Worth

446



13 "weston fox" FALSE 2009-08-21 6433 HATCHER ST City of Fort Worth
14 "weston fox," FALSE 2009-08-21 6433 HATCHER ST City of Fort Worth
15 "zariah hernandez" FALSE 1944-09-27 3201 ORANGE AVE FORT WORTH

In the output above, there are 15 rows. R has identified 1 row with a duplicate name (dup ==
TRUE), which results in a count of 14 unique people. So, simply coercing all the letters to
lower case alone helped R figure out that there was a duplicate name value for arabella george.
Next, let’s go ahead and remove the trailing space from Ryan Edwards’ name.

29.2 Trim white space

we can use stringr’s str_trim() function to “trim” white space from the beginning and end
of character strings. For example:

str_trim("Ryan Edwards ")

[1] "Ryan Edwards"

Let’s go ahead and use the str_trim() function now as the next step in cleaning our data:

ehr <- ehr %>%
mutate(name = str_trim(name))

Now, let’s check and see how many unique people R finds in our data?

ehr %>%
group_by(name) %>%
mutate(dup = row_number() > 1) %>%
arrange(name) %>%
select(name, dup, dob, address, city)

# A tibble: 15 x 5
# Groups: name [13]

name dup dob address city
<chr> <lgl> <date> <chr> <chr>

1 arabella george FALSE 1966-06-15 357 Angle FORT WORTH
2 arabella george TRUE 1966-06-15 357 Angle FORT WORTH
3 charlee carroll FALSE 1908-07-22 8190 DUCK CREEK CT City of Fort Worth
4 emma medrano FALSE 1975-05-01 6301 BEECHCREEK DR KELLER

447



5 ivy mccann FALSE 1911-06-21 5426 CHILDRESS ST FORT WORTH
6 ivy mccann FALSE 1911-06-21 5426 CHILDRESS ST FORT WORTH
7 jasper decker FALSE 1954-05-11 3612 LAURA ANNE CT. FORT WORTH
8 kane martin FALSE 1939-10-27 4929 asbury FORT WORTH
9 ryan edwards FALSE 1917-12-10 3201 HORIZON PL City of Saginaw
10 ryan edwards TRUE 1917-12-10 3201 HORIZON PL City of Saginaw
11 tatum chavez FALSE 1952-06-12 1117 richmond ave Fort Worth
12 tatum s chavez FALSE 1952-06-12 1117 richmond ave Fort Worth
13 weston fox FALSE 2009-08-21 6433 HATCHER ST City of Fort Worth
14 weston fox, FALSE 2009-08-21 6433 HATCHER ST City of Fort Worth
15 zariah hernandez FALSE 1944-09-27 3201 ORANGE AVE FORT WORTH

In the output above, there are 15 rows. R has identified 2 rows with a duplicate name (dup
== TRUE), which results in a count of 13 unique people. We’re getting closer. � However,
the rest of the discrepancies in the name column that we want to address are a little more
complicated. There isn’t a pre-made base R or stringr function that will fix them. Instead,
we’ll need to learn how to use something called regular expressions.

29.3 Regular expressions

Regular expressions, also called regex or regexps, can be really intimidating at first. In
fact, I debated whether or not to even include a discussion of regular expressions at this
point in the book. However, regular expressions are the most powerful and flexible tool for
manipulating character strings that I are aware of. So, I think it’s important for you to get
a little exposure to regular expressions, even if you aren’t a regular expressions expert by the
end of this chapter.

The first time you see regular expressions, you will probably think they look like gibber-
ish. For example, here’s a regular expression that I recently used to clean a data set
(\d{1,2}\/\d{1,2}\/\d{2}). You can think of regular expressions as an entirely different
programming language that the R interpreter can also understand. Regular expressions
aren’t unique to R. Many programming languages can accept regular expressions as a way to
manipulate character strings.

In the examples that follow, we hope
1. To give you a feel for how regular expression can be useful.
2. Provide you with some specific regular expressions that you may want to save for your epi
work (or your class assignments).
3. Provide you with some resources to help you take your regular expression skills to the next
level when you are ready.

448



29.3.1 Remove the comma

For our first example, let’s remove the comma from Weston Fox’s last name.

str_replace(
string = "weston fox,",
pattern = ",",
replacement = ""

)

[1] "weston fox"

�Here’s what we did above:

• we used stringr’s str_replace() function remove the comma from the character string
“weston fox,”.

• The first argument to the str_replace() function is string. The value passed the
string argument should be the character string, or vector of character strings, we want
to manipulate.

• The second argument to the str_replace() function is pattern. The value passed
the pattern argument should be regular expression. It should tell the str_replace()
function what part of the character string we want to replace. In this case, it is a
comma (","). We are telling the str_replace() function that we want it to replace the
first comma it sees in the character string “weston fox,” with the value we pass to the
replacement argument.

• The third argument to the str_replace() function is replacement. The value passed
the replacement argument should also be regular expression. It should tell the
str_replace() function to what replace the value identified in the pattern argument
with. In this case, it is nothing ("") – two double quotes with nothing in-between. We
are telling the str_replace() function that we want it to replace the first comma it
sees in the character string “weston fox,” with nothing. This is sort of a long-winded
way of saying, “delete the comma.”

Warning

Notice that our regular expressions above are wrapped in quotes. Regular expressions
should always be wrapped in quotes.

Let’s go ahead and use the str_replace() function now as the next step in cleaning our
data:

449



ehr <- ehr %>%
mutate(name = str_replace(name, ",", ""))

Now, let’s check and see how many unique people R finds in our data?

ehr %>%
group_by(name) %>%
mutate(dup = row_number() > 1) %>%
arrange(name) %>%
select(name, dup, dob, address, city)

# A tibble: 15 x 5
# Groups: name [12]

name dup dob address city
<chr> <lgl> <date> <chr> <chr>

1 arabella george FALSE 1966-06-15 357 Angle FORT WORTH
2 arabella george TRUE 1966-06-15 357 Angle FORT WORTH
3 charlee carroll FALSE 1908-07-22 8190 DUCK CREEK CT City of Fort Worth
4 emma medrano FALSE 1975-05-01 6301 BEECHCREEK DR KELLER
5 ivy mccann FALSE 1911-06-21 5426 CHILDRESS ST FORT WORTH
6 ivy mccann FALSE 1911-06-21 5426 CHILDRESS ST FORT WORTH
7 jasper decker FALSE 1954-05-11 3612 LAURA ANNE CT. FORT WORTH
8 kane martin FALSE 1939-10-27 4929 asbury FORT WORTH
9 ryan edwards FALSE 1917-12-10 3201 HORIZON PL City of Saginaw
10 ryan edwards TRUE 1917-12-10 3201 HORIZON PL City of Saginaw
11 tatum chavez FALSE 1952-06-12 1117 richmond ave Fort Worth
12 tatum s chavez FALSE 1952-06-12 1117 richmond ave Fort Worth
13 weston fox FALSE 2009-08-21 6433 HATCHER ST City of Fort Worth
14 weston fox TRUE 2009-08-21 6433 HATCHER ST City of Fort Worth
15 zariah hernandez FALSE 1944-09-27 3201 ORANGE AVE FORT WORTH

In the output above, there are 15 rows. R has identified 3 rows with a duplicate name (dup
== TRUE), which results in a count of 12 unique people.

29.3.2 Remove middle initial

Next, let’s remove the middle initial from Tatum Chavez’s name.

450



str_replace(
string = "tatum s chavez",
pattern = " \\w ",
replacement = " "

)

[1] "tatum chavez"

�Here’s what we did above:

• we used stringr’s str_replace() function remove the “s” from the character string
“tatum s chavez”.

• The first argument to the str_replace() function is string. The value passed the
string argument should be the character string, or vector of character strings, we want
to manipulate.

• The second argument to the str_replace() function is pattern. The value passed
the pattern argument should be regular expression. It should tell the str_replace()
function what part of the character string we want to replace. In this case, it is " \\w
". That is a space, two backslashes, a “w,” and a space. This regular expression looks a
little stranger than the last one we saw.

– The \w is called a token in regular expression lingo. The \w token means “Any word
character.” Any word character includes all the letters of the alphabet upper and
lowercase (i.e., [a-zA-Z]), all numbers (i.e., [0-9]), and the underscore character
(_).

– When passing regular expression to R, we must always add an additional backslash
in front of any other backslash in the regular expression. In this case, \\w instead
of \w.

– If we had stopped here ("\\w"), this regular expression would have told the
str_replace() function that we want it to replace the first word character it sees
in the character string “tatum s chavez” with the value we pass to the replacement
argument. In this case, that would have been the “t” at the beginning of “tatum s
chavez”.

– The final component of the regular expression we passed to the pattern argument
is spaces on both sides of the \\w token. The complete regular expression, " \\w
", tells the str_replace() function that we want it to replace the first time it sees
a space, followed by any word character, followed by another space in the character
string “tatum s chavez” with the value we pass to the replacement argument. The
first section of the character string above that matches that pattern is the ” s ” in
“tatum s chavez”.

451



• The third argument to the str_replace() function is replacement. The value passed
the replacement argument should also be regular expression. It should tell the
str_replace() function what to replace the value identified in the pattern argument
with. In this case, it is a single space (" ").

Let’s go ahead and use the str_replace() function now as the next step in cleaning our
data:

ehr <- ehr %>%
mutate(name = str_replace(name, " \\w ", " "))

And, let’s once again check and see how many unique people R finds in our data?

ehr %>%
group_by(name) %>%
mutate(dup = row_number() > 1) %>%
arrange(name) %>%
select(name, dup, dob, address, city)

# A tibble: 15 x 5
# Groups: name [11]

name dup dob address city
<chr> <lgl> <date> <chr> <chr>

1 arabella george FALSE 1966-06-15 357 Angle FORT WORTH
2 arabella george TRUE 1966-06-15 357 Angle FORT WORTH
3 charlee carroll FALSE 1908-07-22 8190 DUCK CREEK CT City of Fort Worth
4 emma medrano FALSE 1975-05-01 6301 BEECHCREEK DR KELLER
5 ivy mccann FALSE 1911-06-21 5426 CHILDRESS ST FORT WORTH
6 ivy mccann FALSE 1911-06-21 5426 CHILDRESS ST FORT WORTH
7 jasper decker FALSE 1954-05-11 3612 LAURA ANNE CT. FORT WORTH
8 kane martin FALSE 1939-10-27 4929 asbury FORT WORTH
9 ryan edwards FALSE 1917-12-10 3201 HORIZON PL City of Saginaw
10 ryan edwards TRUE 1917-12-10 3201 HORIZON PL City of Saginaw
11 tatum chavez FALSE 1952-06-12 1117 richmond ave Fort Worth
12 tatum chavez TRUE 1952-06-12 1117 richmond ave Fort Worth
13 weston fox FALSE 2009-08-21 6433 HATCHER ST City of Fort Worth
14 weston fox TRUE 2009-08-21 6433 HATCHER ST City of Fort Worth
15 zariah hernandez FALSE 1944-09-27 3201 ORANGE AVE FORT WORTH

In the output above, there are 15 rows. R has identified 4 rows with a duplicate name (dup
== TRUE), which results in a count of 11 unique people.

452



29.3.3 Remove double spaces

Finally, let’s remove the double space from Ivy Mccann’s name.

str_replace(
string = "Ivy Mccann",
pattern = "\\s{2,}",
replacement = " "

)

[1] "Ivy Mccann"

�Here’s what we did above:

• we used stringr’s str_replace() function remove the double space from the character
string “Ivy Mccann”.

• The first argument to the str_replace() function is string. The value passed the
string argument should be the character string, or vector of character strings, we want
to manipulate.

• The second argument to the str_replace() function is pattern. The value passed
the pattern argument should be regular expression. It should tell the str_replace()
function what part of the character string we want to replace. In this case, it is \\s{2,}.
This regular expression looks even more strange than the last one we saw.

– The \s is another token. The \s token means “Any whitespace character.”

– When passing regular expression to R, we must always add an additional backslash
in front of any other backslash in the regular expression. In this case, \\s instead
of \s.

– The curly braces with numbers inside is called a quantifier in regular expression
lingo. The first number inside the curly braces tells str_replace() to look for at
least this many occurrences of whatever is immediately before the curly braces in the
regular expression. The second number inside the curly braces tells str_replace()
to look for no more than this many occurrences of whatever is immediately before
the curly braces in the regular expression. When there is no number in the first
position, that means that there is no minimum number of occurrences that count.
When there is no number is the second position, that means that there is no upper
limit of occurrences that count. In this case, the thing immediately before the
curly braces in the regular expression was a whitespace (\\s), and the {2,} tells
str_replace() to look for between 2 and unlimited consecutive occurrences of
whitespace.

453



• The third argument to the str_replace() function is replacement. The value passed
the replacement argument should also be regular expression. It should tell the
str_replace() function what to replace the value identified in the pattern argument
with. In this case, it is a single space (" ").

Let’s go ahead and use the str_replace() function now as the final step in cleaning our name
column:

ehr <- ehr %>%
mutate(name = str_replace(name, "\\s{2,}", " "))

Let’s check one final time to see how many unique people R finds in our data.

ehr %>%
group_by(name) %>%
mutate(dup = row_number() > 1) %>%
arrange(name) %>%
select(name, dup, dob, address, city)

# A tibble: 15 x 5
# Groups: name [10]

name dup dob address city
<chr> <lgl> <date> <chr> <chr>

1 arabella george FALSE 1966-06-15 357 Angle FORT WORTH
2 arabella george TRUE 1966-06-15 357 Angle FORT WORTH
3 charlee carroll FALSE 1908-07-22 8190 DUCK CREEK CT City of Fort Worth
4 emma medrano FALSE 1975-05-01 6301 BEECHCREEK DR KELLER
5 ivy mccann FALSE 1911-06-21 5426 CHILDRESS ST FORT WORTH
6 ivy mccann TRUE 1911-06-21 5426 CHILDRESS ST FORT WORTH
7 jasper decker FALSE 1954-05-11 3612 LAURA ANNE CT. FORT WORTH
8 kane martin FALSE 1939-10-27 4929 asbury FORT WORTH
9 ryan edwards FALSE 1917-12-10 3201 HORIZON PL City of Saginaw
10 ryan edwards TRUE 1917-12-10 3201 HORIZON PL City of Saginaw
11 tatum chavez FALSE 1952-06-12 1117 richmond ave Fort Worth
12 tatum chavez TRUE 1952-06-12 1117 richmond ave Fort Worth
13 weston fox FALSE 2009-08-21 6433 HATCHER ST City of Fort Worth
14 weston fox TRUE 2009-08-21 6433 HATCHER ST City of Fort Worth
15 zariah hernandez FALSE 1944-09-27 3201 ORANGE AVE FORT WORTH

In the output above, there are 15 rows. R has identified 5 rows with a duplicate name (dup
== TRUE), which results in a count of 10 unique people. This is the answer we wanted! �

454



If our data frame was too big to count unique people manually, we could have R calculate the
number of unique people for us like this:

ehr %>%
group_by(name) %>%
filter(row_number() == 1) %>%
ungroup() %>%
summarise(`Unique People` = n())

# A tibble: 1 x 1
`Unique People`

<int>
1 10

�Here’s what we did above:

• With the exception of filter(row_number() == 1), you should have seen all of the
elements in the code above before.

• we saw the row_number() function used before inside of mutate() to sequentially count
the number of rows that belong to each group created with group_by(). We could have
done that in the code above. The filter(row_number() == 1) code is really just a
shorthand way to write mutate(row = row_number()) %>% filter(row == 1). It has
the effect of telling R to just keep the first row for each group created by group_by().
In this case, just keep the first row for each name in the data frame.

Now that we know how many unique people are in our data, let’s say we want to know how
many of them live in each city that our data contains.

First, we will subset our data to include one row only for each person:

ehr_unique <- ehr %>%
group_by(name) %>%
filter(row_number() == 1) %>%
ungroup() %>%
print()

# A tibble: 10 x 6
admit_date name dob address city symptoms
<dttm> <chr> <date> <chr> <chr> <chr>

1 2017-02-01 05:22:30 zariah hernandez 1944-09-27 3201 ORANGE A~ FORT~ "\"Pain~
2 2017-04-08 09:17:17 tatum chavez 1952-06-12 1117 richmond~ Fort~ "Pain"

455



3 2017-08-31 18:29:34 arabella george 1966-06-15 357 Angle FORT~ "\"Naus~
4 2017-09-13 06:27:07 jasper decker 1954-05-11 3612 LAURA AN~ FORT~ "\"Pain~
5 2017-10-07 06:31:18 weston fox 2009-08-21 6433 HATCHER ~ City~ "Pain"
6 2017-10-08 23:17:18 ryan edwards 1917-12-10 3201 HORIZON ~ City~ <NA>
7 2017-10-27 18:37:00 emma medrano 1975-05-01 6301 BEECHCRE~ KELL~ "\"Naus~
8 2017-12-18 20:47:48 ivy mccann 1911-06-21 5426 CHILDRES~ FORT~ "\"Head~
9 2017-12-20 13:40:04 charlee carroll 1908-07-22 8190 DUCK CRE~ City~ "Headac~
10 2018-01-28 08:49:38 kane martin 1939-10-27 4929 asbury FORT~ <NA>

Let’s go ahead and get an initial count of how many people live in each city:

ehr %>%
group_by(city) %>%
summarise(n = n())

# A tibble: 5 x 2
city n
<chr> <int>

1 City of Fort Worth 3
2 City of Saginaw 2
3 FORT WORTH 7
4 Fort Worth 2
5 KELLER 1

I’m sure you saw this coming, but we have more data entry discrepancies that are prevent-
ing us from completing our analysis. Now that you’ve gotten your feet wet with character
string manipulation and regular expressions, what do we need to do in order to complete our
analysis?

Hopefully, your first instinct by now is to coerce all the letters to lowercase. In fact, one of the
first things we typically do is coerce all character columns to lowercase. Let’s do that now.

ehr <- ehr %>%
mutate(

address = tolower(address),
city = tolower(city)

)

Now how many people live in each city?

456



ehr %>%
group_by(city) %>%
summarise(n = n())

# A tibble: 4 x 2
city n
<chr> <int>

1 city of fort worth 3
2 city of saginaw 2
3 fort worth 9
4 keller 1

we’re getting closer to the right answer, but we still need to remove “city of” from some of the
values. This sounds like another job for str_replace().

str_replace(
string = "city of fort worth",
pattern = "city of ",
replacement = ""

)

[1] "fort worth"

That regular expression looks like it will work. Let’s go ahead and use it to remove “city of”
from the values in the address_city column now.

ehr <- ehr %>%
mutate(city = str_replace(city, "city of ", ""))

One last time, how many people live in each city?

ehr %>%
group_by(city) %>%
summarise(n = n())

# A tibble: 3 x 2
city n
<chr> <int>

1 fort worth 12
2 keller 1
3 saginaw 2

457



29.4 Separate values into component parts

Another common task that I perform on character strings is to separate the strings into multiple
parts. For example, sometimes we may want to separate full names into two columns. One
for fist name and one for last name. To complete this task, we will once again use regular
expressions. We will also learn how to use the str_extract() function to pull values out of
a character string when the match a pattern we create with a regular expression.

str_extract("zariah hernandez", "^\\w+")

[1] "zariah"

�Here’s what we did above:

• we used stringr’s str_extract() function pull the first name out of the full name
“zariah hernandez”.

• The first argument to the str_extract() function is string. The value passed the
string argument should be the character string, or vector of character strings, we want
to manipulate.

• The second argument to the str_extract() function is pattern. The value passed
the pattern argument should be regular expression. It should tell the str_extract()
function what part of the character string we want to pull out of the character string.
In this case, it is ^\\w+.

– we’ve already seen that the \w token means “Any word character.”

– When passing regular expression to R, we must always add an additional backslash
in front of any other backslash in the regular expression. In this case, \\w instead
of \w.

– The carrot (^) is a type of anchor in regular expression lingo. It tells the
str_extract() function to look for the pattern at the start of the character sting
only.

– The plus sign (+) is another quantifier. It means, “match the pattern one or more
times.”

– Taken together, ^\\w+ tells the str_extract() function to look for one or more con-
secutive word characters beginning at the start of the character string and extract
them.

– The first word character at the start of the string is “z”, then “a”, then “riah”.
Finally, R gets to the space between “zariah” and “hernandez”, which isn’t a word
character, and stops the extraction. The result is “zariah”.

458



we can pull the last name from the character string in a similar way:

str_extract("zariah hernandez", "\\w+$")

[1] "hernandez"

�Here’s what we did above:

• we used stringr’s str_extract() function pull the last name out of the full name
“zariah hernandez”.

• The first argument to the str_extract() function is string. The value passed the
string argument should be the character string, or vector of character strings, we want
to manipulate.

• The second argument to the str_extract() function is pattern. The value passed
the pattern argument should be regular expression. It should tell the str_extract()
function what part of the character string we want to pull out of the character string.
In this case, it is \\w+$.

– we’ve already seen that the \w token means “Any word character.”

– When passing regular expression to R, we must always add an additional backslash
in front of any other backslash in the regular expression. In this case, \\w instead
of \w.

– The dollar sign ($) is another type of anchor. It tells the str_extract() function
to look for the pattern at the end of the string only.

– we’ve already seen that the plus sign (+) is a quantifier that means, “match the
pattern one or more times.”

-Taken together, \\w+$ tells the str_extract() function to look for one or more consec-
utive word characters beginning at the end of the string and extract them.

– The first word character at the end of the string is “z”, then “e”, then “dnanreh”.
Finally, R gets to the space between “zariah” and “hernandez”, which isn’t a word
character, and stops the extraction. The result is “hernandez”.

Now, let’s use str_extract() to separate full name into name_first and name_last.

ehr <- ehr %>%
mutate(

# Separate name into first name and last name
name_first = str_extract(name, "^\\w+"),
name_last = str_extract(name, "\\w+$")

)

459



ehr %>%
select(name, name_first, name_last)

# A tibble: 15 x 3
name name_first name_last
<chr> <chr> <chr>

1 zariah hernandez zariah hernandez
2 tatum chavez tatum chavez
3 tatum chavez tatum chavez
4 arabella george arabella george
5 jasper decker jasper decker
6 arabella george arabella george
7 weston fox weston fox
8 ryan edwards ryan edwards
9 weston fox weston fox
10 ryan edwards ryan edwards
11 emma medrano emma medrano
12 ivy mccann ivy mccann
13 charlee carroll charlee carroll
14 ivy mccann ivy mccann
15 kane martin kane martin

The regular expressions we used in the examples above weren’t super complex. We hope that
leaves you feeling like you can use regular expression to complete data cleaning tasks that are
actually useful, even if you haven’t totally mastered them yet (I haven’t totally mastered them
either).

Before moving on, we want to introduce you to a free tool I use when I have to do more
complex character string manipulations with regular expressions. It is the regular expressions
101 online regex tester and debugger.

460

https://regex101.com/#python
https://regex101.com/#python


In the screenshot above, I highlight some of the really cool features of the regex tester and
debugger.

• First, you can use the regex tester without logging in. However, I typically do log in
because that allows me to save regular expressions and use them again later.

• The top input box on the screen corresponds to what you would type into the pattern
argument of the str_replace() function.

• The middle input box on the screen corresponds to what you would type into the string
argument of the str_replace() function.

• The third input box on the screen corresponds to what you would type into the
replacement argument of the str_replace() function, and the results are presented
below.

• In addition, the regex tester and debugger has a quick reference pane that allows you
to lookup different elements you might want to use in your regular expression. It also
has an explanation pane that tells you what each of the elements in the current regular
expression you typed out mean.

461



29.5 Dummy variables

Data collection tools in epidemiology often include “check all that apply” questions. In our ehr
example data, patients were asked about what symptoms they were experiencing at admission.
The choices were pain, headache, and nausea. They were allowed to check any combination of
the three that they wanted. That results in a symptoms column in our data frame that looks
like this:

Note

Any categorical variable can be transformed into dummy variables. Not just the variables
that result from “check all that apply” survey questions. However, the “check all that
apply” survey questions often require extra data cleaning steps relative to categorical
variables that can only take a single value in each row.

ehr %>%
select(name_first, name_last, symptoms)

# A tibble: 15 x 3
name_first name_last symptoms
<chr> <chr> <chr>

1 zariah hernandez "\"Pain\", \"Headache\", \"Nausea\""
2 tatum chavez "Pain"
3 tatum chavez "Pain"
4 arabella george "\"Nausea\", \"Headache\""
5 jasper decker "\"Pain\", \"Headache\""
6 arabella george "\"Nausea\", \"Headache\""
7 weston fox "Pain"
8 ryan edwards <NA>
9 weston fox "Pain"
10 ryan edwards <NA>
11 emma medrano "\"Nausea\", \"Headache\""
12 ivy mccann "\"Headache\", \"Pain\", \"Nausea\""
13 charlee carroll "Headache"
14 ivy mccann "\"Headache\", \"Pain\", \"Nausea\""
15 kane martin <NA>

Notice that some people didn’t report their symptoms (NA), some people reported only one
symptom, and some people reported multiple symptoms. The way the data is currently for-
matted is not ideal for analysis. For example, if I asked you to tell me how many people ever
came in complaining of headache, how would you do that? Maybe like this:

462



ehr %>%
group_by(symptoms) %>%
summarise(n = n())

# A tibble: 7 x 2
symptoms n
<chr> <int>

1 "\"Headache\", \"Pain\", \"Nausea\"" 2
2 "\"Nausea\", \"Headache\"" 3
3 "\"Pain\", \"Headache\"" 1
4 "\"Pain\", \"Headache\", \"Nausea\"" 1
5 "Headache" 1
6 "Pain" 4
7 <NA> 3

In this case, you could probably count manually and get the right answer. But what if we had
many more possible symptoms and many more rows. Counting would quickly become tedious
and error prone. The solution is to create dummy variables. We can create dummy variables
like this:

ehr <- ehr %>%
mutate(

pain = str_detect(symptoms, "Pain"),
headache = str_detect(symptoms, "Headache"),
nausea = str_detect(symptoms, "Nausea")

)

ehr %>%
select(symptoms, pain, headache, nausea)

# A tibble: 15 x 4
symptoms pain headache nausea
<chr> <lgl> <lgl> <lgl>

1 "\"Pain\", \"Headache\", \"Nausea\"" TRUE TRUE TRUE
2 "Pain" TRUE FALSE FALSE
3 "Pain" TRUE FALSE FALSE
4 "\"Nausea\", \"Headache\"" FALSE TRUE TRUE
5 "\"Pain\", \"Headache\"" TRUE TRUE FALSE
6 "\"Nausea\", \"Headache\"" FALSE TRUE TRUE
7 "Pain" TRUE FALSE FALSE
8 <NA> NA NA NA

463



9 "Pain" TRUE FALSE FALSE
10 <NA> NA NA NA
11 "\"Nausea\", \"Headache\"" FALSE TRUE TRUE
12 "\"Headache\", \"Pain\", \"Nausea\"" TRUE TRUE TRUE
13 "Headache" FALSE TRUE FALSE
14 "\"Headache\", \"Pain\", \"Nausea\"" TRUE TRUE TRUE
15 <NA> NA NA NA

�Here’s what we did above:

• we used stringr’s str_detect() function create three new dummy variables in our data
frame.

• The first argument to the str_detect() function is string. The value passed the
string argument should be the character string, or vector of character stings, we want
to manipulate.

• The second argument to the str_detect() function is pattern. The value passed the
pattern argument should be regular expression. The str_detect() function returns
TRUE if it finds the pattern in the string and FALSE if it does not find the pattern in the
string.

• Instead of having a single symptoms column that can take different combinations of the
values pain, headache, and nausea, we create a new column for each value – the so-called
dummy variables.

• Each dummy variable can take the value TRUE, FALSE, or NA. The value for each dummy
variable is TRUE in rows were that symptom was reported and FALSE in rows where the
symptom was not reported. For example, the value in the first row of the pain column
is TRUE because the value in the first row of symptoms column (“Pain”, “Headache”,
“Nausea”) includes “Pain”. However, the value in the fourth row of the pain column is
FALSE because the value in the fourth row of symptoms column (“Nausea”, “Headache”)
does not include “Pain”.

Now, we can much more easily figure out how many people had each symptom.

table(ehr$headache)

FALSE TRUE
4 8

we should acknowledge that dummy variables typically take the values 0 and 1 instead
of FALSE and TRUE. We can easily coerce our dummy variable values to 0/1 using the
as.numeric() function. For example:

464



ehr %>%
select(pain) %>%
mutate(pain_01 = as.numeric(pain))

# A tibble: 15 x 2
pain pain_01
<lgl> <dbl>

1 TRUE 1
2 TRUE 1
3 TRUE 1
4 FALSE 0
5 TRUE 1
6 FALSE 0
7 TRUE 1
8 NA NA
9 TRUE 1
10 NA NA
11 FALSE 0
12 TRUE 1
13 FALSE 0
14 TRUE 1
15 NA NA

However, this step is sort of unnecessary in most cases because R treats TRUE and FALSE
as 1 and 0 respectively when logical (i.e., TRUE/FALSE) vectors are passed to functions or
operators that perform a mathematical operation.

That concludes the chapter on working with character strings. Don’t beat yourself up if you’re
feeling confused about regular expressions. They are really tough to wrap your head around
at first! But, at least now you know they exist and can be useful for manipulating character
strings. If you come across more complicated situations in the future, we suggest starting by
checking out the stringr cheat sheet and practicing with the regular expressions 101 online
regex tester and debugger before writing any R code.

465

https://stringr.tidyverse.org/index.html
https://regex101.com/#python
https://regex101.com/#python


30 Conditional Operations

There will often be times that we want to modify the values in one column of our data based
on the values in one or more other columns in our data. For example, maybe we want to create
a column that contains the region of the country someone is from, based on another column
that contains the state they are from.

we don’t really have a way to do this with the tools we currently have in our toolbox. We can
manually type out all the region values, but that isn’t very scalable. Wouldn’t it be nice if we
could just give R some rules, or conditions (e.g., TX is in the South, CA is in the West), and
have R fill in the region values for us? Well, that’s exactly what we are going to learn how to
do in this chapter.

466



These kinds of operations are called conditional operations because we type in a set of condi-
tions, R evaluates those conditions, and then executes a different process or procedure based
on whether or not the condition is met.

As a silly example, let’s say that we want our daughters to wear a raincoat if it’s raining
outside, but we don’t want them to wear a raincoat if it is not raining outside. So, we give
them a conditional request: “If it’s raining outside, then make sure to wear your raincoat,
please. Otherwise, please don’t wear your raincoat.”

467



In this hypothetical scenario, they say, “yes, dad,” and then go to the window to see if it’s
raining. Then, they choose their next action (i.e., raincoat wearing) depending on whether the
condition (raining) is met or not.

Just like we have to ask our daughters to put on a raincoat using conditional logic, we some-
times have to ask R to execute commands using conditional logic. Additionally, we have to do
so in a way that R understands. For example, we can use dplyr’s if_else() function to ask
R to execute commands conditionally. Let’s go ahead and take a look at an example now:

library(dplyr)

rainy_days <- tibble(
day = 1:5,
weather = c("rain", "rain", "no rain", "rain", "no rain")

) %>%
print()

# A tibble: 5 x 2
day weather

<int> <chr>
1 1 rain
2 2 rain
3 3 no rain

468



4 4 rain
5 5 no rain

�Here’s what we did above:

• we simulated some data that contains information about whether or not it rained on
each of 5 days.

Now, let’s say that we want to create a new column in our data frame called raincoat. We
want the value of raincoat to be wear on rainy days and no wear on days when it isn’t
raining. Here’s how we can do that with the if_else() function:

rainy_days %>%
mutate(

raincoat = if_else(
condition = weather == "rain",
true = "wear",
false = "no wear"

)
)

# A tibble: 5 x 3
day weather raincoat

<int> <chr> <chr>
1 1 rain wear
2 2 rain wear
3 3 no rain no wear
4 4 rain wear
5 5 no rain no wear

�Here’s what we did above:

• we used dplyr’s if_else() function to assign the values wear and no wear to the column
raincoat conditional on the values in each row of the weather column.

• You can type ?if_else into our R console to view the help documentation for this
function and follow along with the explanation below.

• The first argument to the if_else() function is the condition argument. The condition
should typically be composed of a series of operands and operators (we’ll talk more about
these soon) that tell R the condition(s) that we want it to test. For example, is the value
of weather equal to rain?

469



• The second argument to the if_else() function is the true argument. The value passed
to the true argument tells R what value the if_else() function should return when the
condition is TRUE. In this case, we told if_else() to return the character value wear.

• The third argument to the if_else() function is the false argument. The value passed
to the false argument tells R what value the if_else() function should return when
the condition is FALSE. In this case, we told if_else() to return the character value no
wear.

• Finally, we assigned all the values returned by the if_else() function to a new column
that we named raincoat.

Note

For the rest of the book, we will pass values to the if_else() function by position instead
of name. In other words, we won’t write condition =, true =, or false = anymore.
However, the first value passed to the if_else() function will always be passed to the
condition argument, the second value will always be passed to the true argument, and
the third value will always be passed to the false argument.

Before moving on, let’s dive into this a little further. R must always be able to reduce whatever
value we pass to the condition argument of if_else() to TRUE or FALSE. That’s how R
views any expression we pass to the condition argument. We can literally even pass the value
TRUE or the value FALSE (not that doing so has much practical application):

if_else(TRUE, "wear", "no wear")

[1] "wear"

Because the value passed to the condition argument is TRUE (in this case, literally), the
if_else() function returns the value wear. What happens if we use this code to assign values
to the raincoat column?

rainy_days %>%
mutate(

raincoat = if_else(TRUE, "wear", "no wear")
)

# A tibble: 5 x 3
day weather raincoat

<int> <chr> <chr>
1 1 rain wear

470



2 2 rain wear
3 3 no rain wear
4 4 rain wear
5 5 no rain wear

Again, the if_else() function returns the value wear because the value passed to the
condition argument is TRUE. Then, R uses its recycling rules to copy the value wear to every
row of the raincoat column. What would do you think will happen if we pass the value
FALSE to the condition argument instead?

rainy_days %>%
mutate(

raincoat = if_else(FALSE, "wear", "no wear")
)

# A tibble: 5 x 3
day weather raincoat

<int> <chr> <chr>
1 1 rain no wear
2 2 rain no wear
3 3 no rain no wear
4 4 rain no wear
5 5 no rain no wear

Hopefully, that was the result you expected. The if_else() function returns the value no
wear because the value passed to the condition argument is FALSE. Then, R uses its recycling
rules to copy the value no wear to every row of the raincoat column.

we can take this a step further and actually pass a vector of logical (TRUE/FALSE) values to
the condition argument. For example:

rainy_days %>%
mutate(

raincoat = if_else(c(TRUE, TRUE, FALSE, TRUE, FALSE), "wear", "no wear")
)

# A tibble: 5 x 3
day weather raincoat

<int> <chr> <chr>
1 1 rain wear
2 2 rain wear

471



3 3 no rain no wear
4 4 rain wear
5 5 no rain no wear

In reality, that’s sort of what we did in the very first if_else() example above. But, instead
of typing the values manually, we used an expression that returned a vector of logical values.
Specifically, we used the equality operator (==) to check whether or not each value in the
weather column was equal to the value “rain” or not.

rainy_days$weather == "rain"

[1] TRUE TRUE FALSE TRUE FALSE

That pretty much covers the basics of how the if_else() function works. Next, let’s take a
look at some of the different combinations of operands and operators that we can combine and
pass to the condition argument of the if_else() function.

30.1 Operands and operators

Let’s start by taking a look at some commonly used operands:

472



As we can see in the table above, operands are the values we want to check, or test. Operands
can be variables or they can be individual values (also called constants). The example above
(weather == "rain") contained two operands; the variable weather and the character con-
stant "rain". The operator we used in this case was the equality operator (==). Next, let’s
take a look at some other commonly used operators.

473



474



we think that most of the operators above will be familiar, or a least intuitive, for most of you.
However, we do want to provide a little bit of commentary for a few of them.

• we haven’t seen the %in% operator before, but we will wait to discuss it below.

• Some of you may have been a little surprised by the results we get from using less than
(<) and greater than (>) with characters. It’s basically just testing alphabetical order. A
comes before B in the alphabet, so A is less than B. Additionally, when two letters are
the same, the upper-case letter is considered greater than the lowercase letter. However,
alphabetical order takes precedence over case. So, b is still greater than A even though
b is lowercase and A is upper case.

• Many of you may not have seen the modulus operator (%%) before. The modulus operator
returns the remainder that is left after dividing two numbers. For example, 4 divided by
2 is 2 with a remainder of 0 because 2 goes into 4 exactly two times. Said another way,
2 * 2 = 4 and 4 - 4 = 0. So, 4 %% 2 = 0. However, 3 divided by 2 is 1 with a remainder
of 1 because 2 goes into 3 one time with 1 left over. Said another way, 2 * 1 = 2 and
3 - 2 = 1. So, 3 %% 2 = 1. How is this useful? Well, the only times we can remember
using the modulus operator have been when we needed to separate even and odd rows
of a data frame. For example, let’s say that we have a data frame where each person has
two rows. The first row always corresponds to treatment A and the second row always
corresponds to treatment B. However, for some reason (maybe blinding?), there was no
treatment column in the data when we received it. We could use the modulus operator
to add a treatment column like this:

475



df <- tibble(
id = c(1, 1, 2, 2),
outcome = c(0, 1, 1, 1)

) %>%
print()

# A tibble: 4 x 2
id outcome

<dbl> <dbl>
1 1 0
2 1 1
3 2 1
4 2 1

df %>%
mutate(

# Odd rows are treatment A
# Even rows are treatment B
treatment = if_else(row_number() %% 2 == 1, "A", "B")

)

# A tibble: 4 x 3
id outcome treatment

<dbl> <dbl> <chr>
1 1 0 A
2 1 1 B
3 2 1 A
4 2 1 B

• we also want to remind you that we should always use the is.na() function to check for
missing values. Not the equality operator (==). Using the equality operator when there
are missing values can give results that may be unexpected. For example:

df <- tibble(
name1 = c("Jon", "John", NA),
name2 = c("Jon", "Jon", "Jon")

)

df %>%
mutate(

name_match = name1 == name2
)

476



# A tibble: 3 x 3
name1 name2 name_match
<chr> <chr> <lgl>

1 Jon Jon TRUE
2 John Jon FALSE
3 <NA> Jon NA

Many of us would expect the third value of the name_match column to be FALSE instead of
NA. There are a couple of different ways we can get FALSE in the third row instead of NA. One
way, although not necessarily the best way, is to use the if_else() function:

df %>%
mutate(

name_match = name1 == name2,
name_match = if_else(is.na(name_match), FALSE, name_match)

)

# A tibble: 3 x 3
name1 name2 name_match
<chr> <chr> <lgl>

1 Jon Jon TRUE
2 John Jon FALSE
3 <NA> Jon FALSE

�Here’s what we did above:

• we used dplyr’s if_else() function to assign the value FALSE to the column name_match
where the original value of name_match was NA.

• The value we passed to the condition argument was is.na(name_match). In doing so,
we asked R to check each value of the name_match column and see if it was NA.

• If it was NA, then we wanted to return the value that we passed to the true argument.
Somewhat confusingly, the value we passed to the true argument was FALSE. All that
means is that we wanted if_else() to return the literal value FALSE when the value for
name_match was NA.

• If the value in name_match was NOT NA, then we wanted to return the value that we
passed to the false argument. In this case, we asked R to return the value that already
exists in the name_match column.

• In more informal language, we asked R to replace missing values in the name_match
column with FALSE and leave the rest of the values unchanged.

477



30.2 Testing multiple conditions simultaneously

So far, we have only ever passed one condition to the condition argument of the if_else()
function. However, we can pass as many conditions as we want. Having said that, more than
2, or maybe 3, gets very convoluted. Let’s go ahead and take a look at a couple of examples
now. We’ll start by simulating some blood pressure data:

blood_pressure <- tibble(
id = 1:10,
sysbp = c(152, 120, 119, 123, 135, 83, 191, 147, 209, 166),
diasbp = c(78, 60, 88, 76, 85, 54, 116, 95, 100, 106)

) %>%
print()

# A tibble: 10 x 3
id sysbp diasbp

<int> <dbl> <dbl>
1 1 152 78
2 2 120 60
3 3 119 88
4 4 123 76
5 5 135 85
6 6 83 54
7 7 191 116
8 8 147 95
9 9 209 100
10 10 166 106

A person may be categorized as having normal blood pressure when their systolic blood pres-
sure is less than 120 mmHG AND their diastolic blood pressure is less than 80 mmHG. We can
use this information and the if_else() function to create a new column in our data frame
that contains information about whether each person in our simulated data frame has normal
blood pressure or not:

blood_pressure %>%
mutate(bp = if_else(sysbp < 120 & diasbp < 80, "Normal", "Not Normal"))

# A tibble: 10 x 4
id sysbp diasbp bp

<int> <dbl> <dbl> <chr>
1 1 152 78 Not Normal

478



2 2 120 60 Not Normal
3 3 119 88 Not Normal
4 4 123 76 Not Normal
5 5 135 85 Not Normal
6 6 83 54 Normal
7 7 191 116 Not Normal
8 8 147 95 Not Normal
9 9 209 100 Not Normal
10 10 166 106 Not Normal

�Here’s what we did above:

• we used dplyr’s if_else() function to create a new column in our data frame (bp) that
contains information about whether each person has normal blood pressure or not.

• we actually passed two conditions to the condition argument. The first condition was
that the value of sysbp had to be less than 120. The second condition was that the
value of diasbp had to be less than 80.

• Because we separated these conditions with the AND operator (&), both conditions had
to be true in order for the if_else() function to return the value we passed to the true
argument – Normal. Otherwise, the if_else() function returned the value we passed
to the false argument – Not Normal.

• Participant 2 had a systolic blood pressure of 120 and a diastolic blood pressure of 60.
Although 60 is less than 80 (condition number 2), 120 is not less than 120 (condition
number 1). So, the value returned by the if_else() function was Not Normal.

• Participant 3 had a systolic blood pressure of 119 and a diastolic blood pressure of 88
Although 119 is less than 120 (condition number 1), 88 is not less than 80 (condition
number 2). So, the value returned by the if_else() function was Not Normal.

• Participant 6 had a systolic blood pressure of 83 and a diastolic blood pressure of 54. In
this case, conditions 1 and 2 were met. So, the value returned by the if_else() function
was Normal.

This is useful! However, in some cases, we need to be able to test conditions sequentially,
rather than simultaneously, and return a different value for each condition.

30.3 Testing a sequence of conditions

Let’s say that we wanted to create a new column in our blood_pressure data frame that
contains each person’s blood pressure category according to the following scale:

479



This is the perfect opportunity to use dplyr’s case_when() function. Take a look:

blood_pressure %>%
mutate(

bp = case_when(
sysbp < 120 & diasbp < 80 ~ "Normal",
sysbp >= 120 & sysbp < 130 & diasbp < 80 ~ "Elevated",
sysbp >= 130 & sysbp < 140 | diasbp >= 80 & diasbp < 90 ~ "Hypertension Stage 1",
sysbp >= 140 | diasbp >= 90 ~ "Hypertension Stage 2"

)
)

# A tibble: 10 x 4
id sysbp diasbp bp

<int> <dbl> <dbl> <chr>
1 1 152 78 Hypertension Stage 2
2 2 120 60 Elevated
3 3 119 88 Hypertension Stage 1
4 4 123 76 Elevated
5 5 135 85 Hypertension Stage 1
6 6 83 54 Normal
7 7 191 116 Hypertension Stage 2
8 8 147 95 Hypertension Stage 2

480



9 9 209 100 Hypertension Stage 2
10 10 166 106 Hypertension Stage 2

�Here’s what we did above:

• we used dplyr’s case_when() function to create a new column in our data frame (bp)
that contains information about each person’s blood pressure category.

• You can type ?case_when into our R console to view the help documentation for this
function and follow along with the explanation below.

• The case_when() function only has a single argument – the ... argument. You should
pass one or more two-sided formulas separated by commas to this argument. What in
the heck does that mean?

– When the help documentation refers to a two-sided formula, it means this: LHS ~
RHS. Here, LHS means left-hand side and RHS means right-hand side.

– The LHS should be the condition or conditions that we want to test. You can think
of this as being equivalent to the condition argument of the if_else() function.

– The RHS should be the value we want the case_when() function to return when the
condition on the left-hand side is met. You can think of this as being equivalent to
the true argument of the if_else() function.

– The tilde symbol (~) is used to separate the conditions on the left-hand side and
the return values on the right-hand side.

• The case_when() function doesn’t have a direct equivalent to the if_else() function’s
false argument. Instead, it evaluates each two-sided formula sequentially until if finds
a condition that is met. If it never finds a condition that is met, then it returns an NA.
We will expand on this more below.

• Finally, we assigned all the values returned by the case_when() function to a new column
that we named bp.

Note

Traditionally, the tilde symbol (~) is used to represent relationships in a statistical model.
Here, it doesn’t have that meaning. We assume this symbol was picked somewhat out of
necessity. Remember, any of the comparison operators, arithmetic operators, and logical
operators may be used to define a condition in the left-hand side, and commas are used
to separated multiple two-sided formulas. Therefore, there aren’t very many symbols left
to choose from. Therefore, tilde it is. That’s our guess anyway.

481



The case_when() function was really useful for creating the bp column above, but there was
also a lot going on there. Next, we’ll take a look at a slightly less complex example and clarify
a few things along the way.

30.4 Recoding variables

In epidemiology, recoding variables is really common. For example, we may collect information
about people’s ages as a continuous variable, but decide that it makes more sense to collapse
age into age categories for our analysis. Let’s say that our analysis plan calls for assigning
each of our participants to one of the following age categories:

1 = child when the participant is less than 12 years old
2 = adolescent when the participant is between the ages of 12 and less than 18
3 = adult when the participant is 18 years old or older

Note

You may not have ever heard of collapsing variables before. It simply means combing
two or more values of our variable. We can collapse continuous variables into categories,
as we discussed in the example above, or we can collapse categories into broader categories
(as we will see with the race category example below). After we collapse a variable, it
always contains fewer (and broader) possible values than it contained before we collapsed
it.

we’re going to show you how to do this below using the case_when() function. However,
we’re going to do it piecemeal so that we can highlight a few important concepts. First, let’s
simulate some data that includes 10 participant’s ages.

# Simulate some age data
set.seed(123)
ages <- tibble(
id = 1:10,
age = c(sample(1:30, 9, TRUE), NA)

) %>%
print()

# A tibble: 10 x 2
id age

<int> <int>
1 1 15
2 2 19
3 3 14

482



4 4 3
5 5 10
6 6 18
7 7 22
8 8 11
9 9 5
10 10 NA

Then, let’s start the process of collapsing the age column into a new column called age_3cat
that contains the 3 age categories we discussed above:

ages %>%
mutate(

age_3cat = case_when(
age < 12 ~ 1

)
)

# A tibble: 10 x 3
id age age_3cat

<int> <int> <dbl>
1 1 15 NA
2 2 19 NA
3 3 14 NA
4 4 3 1
5 5 10 1
6 6 18 NA
7 7 22 NA
8 8 11 1
9 9 5 1
10 10 NA NA

�Here’s what we did above:

• we used dplyr’s case_when() function to create a new column in our data frame
(age_3cat) that will eventually categorize each participant into one of 3 categories de-
pending on their continuous age value.

• Notice that we only passed one two-sided formula to the case_when() function – age <
12 ~ 1.

– The RHS of the two-sided formula is age < 12. This tells the case_when() function
to check whether or not every value in the age column is less than 12 or not.

483



– The LHS of the two-sided formula is 1. This tells the case_when() function what
value to return each time it finds a value less than 12 in the age column.

– The tilde symbol is used to separate the RHS and the LHS of the two-sided formula.

• Here is how the case_when() function basically works. It will test the condition on the
left-hand side for each value of the variable, or variables, passed to the left-hand side (i.e.,
age). If the condition is met (i.e., < 12), then it will return the value on the right-hand
side of the tilde (i.e., 1). If the condition is not met, it will test the condition in the next
two-sided formula. When there are no more two-sided formulas, then it will return an
NA.

– Above, the first value in age is 15. 15 is NOT less than 12. So, case_when() tries
to move on to the next two-sided formula. However, there is no next two-sided
formula. So, the first value returned by the case_when() function is NA. The same
is true for the next two values of age.

– The fourth value in age is 3. 3 is less than 12. So, the fourth value returned by the
case_when() function is 1. And so on…

– Finally, after the case_when() function has tested all conditions, the returned val-
ues are assigned to a new column that we named age_3cat.

• Notice that we named the new variable age_3cat. We’re not sure where we picked up
this naming convention, but we use it a lot when we collapse variables. The basic format
is the name of variable we’re collapsing, an underscore, and the number of categories in
the collapsed variable. We like using this convention for two reasons. First, the resulting
column names are meaningful and informative. Second, we don’t have to spend any time
trying to think of a different meaningful or informative name for my new variable. It’s
totally fine if you don’t adopt this naming convention, but we would recommend that
you try to use names that are more informative than age2 or something like that.

• Notice that we used a number (1) on the right-hand side of the two-sided formula above.
We could have used a character value instead (i.e., child); however, for reasons we dis-
cussed in the section on factor variables, we prefer to recode my variables using numeric
categories and then later creating a factor version of the variable using the _f naming
convention.

Now, let’s add a second two-sided formula to our case_when() function.

ages %>%
mutate(

age_3cat = case_when(
age < 12 ~ 1,
age >= 12 & age < 18 ~ 2

484



)
)

# A tibble: 10 x 3
id age age_3cat

<int> <int> <dbl>
1 1 15 2
2 2 19 NA
3 3 14 2
4 4 3 1
5 5 10 1
6 6 18 NA
7 7 22 NA
8 8 11 1
9 9 5 1
10 10 NA NA

�Here’s what we did above:

• we used dplyr’s case_when() function to create a new column in our data frame
(age_3cat) that will eventually categorize each participant into one of 3 categories de-
pending on their continuous age value.

• Notice that this time we passed two two-sided formulas to the case_when() function –
age < 12 ~ 1 and age >= 12 & age < 18 ~ 2.

– Notice that we separated the two two-sided formulas with a comma (i.e., immedi-
ately after the 1 in age < 12 ~ 1.

– Notice that the second two-sided formula is actually testing two conditions. First,
it tests whether or not the value of age is greater than or equal to 12. Then, it tests
whether or not the value of age is less than 18.

– Because we separated the two conditions with the and operator (&), both must be
TRUE for case_when() to return the value 2. Otherwise, it will move on to the
next two-sided formula.

– Above, the first value in age is 15. 15 is NOT less than 12. So, case_when() moves
on to evaluate the next two-sided formula. 15 is greater than or equal to 12 AND
15 is less than 18. Because both conditions of the second two-sided formula were
met, case-when() returns the value on the right-hand side of the second two-sided
formula – 2. So, the first value returned by the case_when() function is 2.

485



– The second value in age is 19. 19 is NOT less than 12. So, case_when() moves on
to evaluate the next two-sided formula. 19 is greater than or equal to 12, but 19 is
NOT less than 18. So, case_when() tries to move on to the next two-sided formula.
However, there is no next two-sided formula. So, the second value returned by the
case_when() function is NA.

– The fourth value in age is 3. 3 is less than 12. So, the fourth value returned by
the case_when() function is 1. At this point, because a condition was met,
case_when() does not continue checking the current value of age against
the remaining two-sided formulas. It returns a 1 and moves on to the
next value of age.

– Finally, after the case_when() function has tested all conditions, the returned val-
ues are assigned to a new column that we named age_3cat.

• In everyday speech, we may express the second two-sided condition above as “categorize
all people between the ages of 12 and 18 as an adolescent.” we want to make two points
about that before moving on.

– First, while that statement may be totally reasonable in everyday speech, it isn’t
quite specific enough for what we are trying to do here. “Between 12 and 18” is
a little bit ambiguous. What category is a person put in if they are exactly 12?
What category are they put in if they are exactly 18? So, clearly we need to be
more precise. We’re not aware of any hard and fast rules for making these kinds of
decisions about categorization, but we tend to include the lower end of the range
in the current category and exclude the value on the upper end of the range in the
current category. So, in the example above, we would say, “categorize all people
between the ages of 12 and less than 18 as an adolescent.”

– Second, when we are testing for a “between” condition like this one, we often see
students write code like this: age >= 12 & < 18. R won’t understand that. We
have to use the column name in each condition to be tested (i.e., age >= 12 &
age < 18), even though it doesn’t change. Otherwise, we get an error that looks
something like this:

ages %>%
mutate(

age_3cat = case_when(
age < 12 ~ 1,
age >= 12 & < 18 ~ 2

)
)

486



Error in parse(text = input): <text>:5:19: unexpected '<'
4: age < 12 ~ 1,
5: age >= 12 & <

^

Ok, let’s go ahead and wrap up this age category variable:

ages %>%
mutate(

age_3cat = case_when(
age < 12 ~ 1,
age >= 12 & age < 18 ~ 2,
age >= 18 ~ 3

)
)

# A tibble: 10 x 3
id age age_3cat

<int> <int> <dbl>
1 1 15 2
2 2 19 3
3 3 14 2
4 4 3 1
5 5 10 1
6 6 18 3
7 7 22 3
8 8 11 1
9 9 5 1
10 10 NA NA

�Here’s what we did above:

• we used dplyr’s case_when() function to create a new column in our data frame
(age_3cat) that categorized each participant into one of 3 categories depending on their
continuous age value.

30.5 case_when() is lazy

What do we mean when we say that case_when() is lazy? Well, it may not have registered
when we mentioned it above, but case_when() stops evaluating two-sided functions for a value
as soon as it finds one that is TRUE. For example:

487



df <- tibble(
number = c(1, 2, 3)

) %>%
print()

# A tibble: 3 x 1
number
<dbl>

1 1
2 2
3 3

df %>%
mutate(

size = case_when(
number < 2 ~ "Small",
number < 3 ~ "Medium",
number < 4 ~ "Large"

)
)

# A tibble: 3 x 2
number size
<dbl> <chr>

1 1 Small
2 2 Medium
3 3 Large

Why wasn’t the value for the size column Large in every row of the data frame? After
all, 1, 2, and 3 are all less than 4, and number < 4 was the final possible two-sided formula
that could have been evaluated for each value of number. The answer is that case_when() is
lazy. The first value in number is 1. 1 is less than 2. So, the condition in the first two-sided
formula evaluates to TRUE. So, case_when() immediately returns the value on the right-hand
side (Small) and does not continue checking two-sided formulas. It moves on to the
next value of number.

The fact that case_when() is lazy isn’t a bad thing. It’s just something to be aware of. In
fact, we can often use it to our advantage. For example, we can use case_when()’s laziness to
rewrite the age_3cat code from above a little more succinctly:

488



ages %>%
mutate(

age_3cat = case_when(
age < 12 ~ 1,
age < 18 ~ 2,
age >= 18 ~ 3

)
)

# A tibble: 10 x 3
id age age_3cat

<int> <int> <dbl>
1 1 15 2
2 2 19 3
3 3 14 2
4 4 3 1
5 5 10 1
6 6 18 3
7 7 22 3
8 8 11 1
9 9 5 1
10 10 NA NA

�Here’s what we did above:

• Because case_when() is lazy, we were able to omit the age >= 12 condition from the
second two-sided formula. It’s unnecessary because the value 1 is immediately returned
for every person with an age value less than 12. By definition, any value being evaluated
in the second two-sided function (age < 18) has an age value greater than or equal to
12.

30.6 Recode missing

We’ve already talked about how R uses the special NA value to represent missing data. We’ve
also learned how to convert other representations of missing data (e.g., “.”) to NA when we are
importing data. However, It is extremely common for data sets that we use in epidemiology
to include “don’t know” and “refused” answer options in addition to true “missing”. By
convention, those options are often coded as 7 and 9. For questions that include 7 or more
response options (e.g., month), then 77 and 99 are commonly used to represent “don’t know”
and “refused”. For questions that include 77 or more response options (e.g., age), then 777
and 999 are commonly used to represent “don’t know” and “refused”.

489



Differentiating between true missing (i.e., the respondent was never asked the question or just
left the response blank on a written questionnaire), don’t know (i.e., the respondent doesn’t
know the answer), and refused (i.e., the respondent knows the answer, but doesn’t want to
reveille it – possibly out of shame, fear, or embarrassment) can be of some interest for survey
design purposes. However, all three of the values described above typically just amount to
missing data by the time we get around to the substantive analyses. In other words, knowing
that a person refused to give their age doesn’t help me figure out how old they are any more
than if they had never been asked at all. Therefore, we commonly use conditional operations
in epidemiology to recode these kinds of values to explicitly missing values (NA).

We’ll walk through an example below, but first we will simulate some additional data. Specif-
ically, we’ll add a race column and a hispanic column to our ages data frame, and name
the new data frame demographics.

Let’s assume that we have a survey that asks people what race they most identify with. For
the moment, let’s assume that they can only select one race. Further, let’s say that the options
they are given to select from are:

1 = White
2 = Black or African American
3 = American Indian or Alaskan Native
4 = Asian
5 = Pacific Islander
7 = Don’t know
9 = Refused

Let’s say that we also ask if they self-identify their ethnicity as Hispanic or not. The options
they are given to select from are:

0 = No, not Hispanic
1 = Yes, Hispanic
7 = Don’t know
9 = Refused

demographics <- ages %>%
mutate(

race = c(1, 2, 1, 4, 7, 1, 2, 9, 1, 3),
hispanic = c(7, 0, 1, 0, 1, 0, 1, 9, 0, 1)

) %>%
print()

# A tibble: 10 x 4
id age race hispanic

<int> <int> <dbl> <dbl>

490



1 1 15 1 7
2 2 19 2 0
3 3 14 1 1
4 4 3 4 0
5 5 10 7 1
6 6 18 1 0
7 7 22 2 1
8 8 11 9 9
9 9 5 1 0
10 10 NA 3 1

A very common way that we may want to transform data like this is to collapse race and
ethnicity into as single combined race and ethnicity column. Further, notice that American
Indian or Alaskan Native race and Asian race are only observed once each, and Pacific Islander
race is not observed at all. When values are observed very few times in the data like this, it
is common to collapse them into an “other” category. Therefore, our new combined race and
ethnicity column will have the following possible values:

1 = White, non-Hispanic
2 = Black, non-Hispanic
3 = Hispanic, any race
4 = Other race, non-Hispanic

There are multiple ways that we can create this new column. We could start by using
if_else() to recode 7 and 9 to missing:

demographics %>%
mutate(

# Recode 7 and 9 to missing
race_recode = if_else(race == 7 | race == 9, NA, race),
hispanic_recode = if_else(hispanic == 7 | hispanic == 9, NA, hispanic)

)

# A tibble: 10 x 6
id age race hispanic race_recode hispanic_recode

<int> <int> <dbl> <dbl> <dbl> <dbl>
1 1 15 1 7 1 NA
2 2 19 2 0 2 0
3 3 14 1 1 1 1
4 4 3 4 0 4 0
5 5 10 7 1 NA 1
6 6 18 1 0 1 0
7 7 22 2 1 2 1

491



8 8 11 9 9 NA NA
9 9 5 1 0 1 0
10 10 NA 3 1 3 1

We intentionally made this error because it’s a really easy one to make, and you will probably
make it too. If we look back to the Let’s get programming chapter, we will see that we briefly
discussed the NA value being type logical by default. We also talked about “type coercion” and
how most of the time we don’t have to worry about it. We said that R generally coerces NA
to NA_character, NA_double, or whatever specific version of NA is most appropriate for the
data type automatically. We also said that there are some exceptions. Notably, when using
the if_else() and case_when() functions, R will throw an error instead of automatically
type coercing. Finally, we said we would discuss it later. It’s later now. Long story short,
the developers of the if_else() function do this on purpose to make the function’s returned
result more predictable and slightly faster.

For us, this just means that we have to remember to use NA_character, NA_integer, or
NA_real as appropriate. For example, the error message above says, “false must be a logical
vector, not a double vector.” This means that the value we passed to the false argument was
type double, but if_else() was expecting it to be type logical. Why? Well, if_else() was
expecting it to be type logical because the value we passed to the true argument (NA) is type
logical, and vectors can only ever have one type. To fix this error, we simply need to change
the value we are passing to the true argument from logical (NA) to double (NA_real) so that
it matches the values we are passing to the false argument.

Let’s try again using NA_real instead of NA.

demographics %>%
mutate(

# Recode 7 and 9 to missing
race_recode = if_else(race == 7 | race == 9, NA_real_, race),
hispanic_recode = if_else(hispanic == 7 | hispanic == 9, NA_real_, hispanic)

)

# A tibble: 10 x 6
id age race hispanic race_recode hispanic_recode

<int> <int> <dbl> <dbl> <dbl> <dbl>
1 1 15 1 7 1 NA
2 2 19 2 0 2 0
3 3 14 1 1 1 1
4 4 3 4 0 4 0
5 5 10 7 1 NA 1
6 6 18 1 0 1 0
7 7 22 2 1 2 1

492



8 8 11 9 9 NA NA
9 9 5 1 0 1 0
10 10 NA 3 1 3 1

Great! We can move on with creating our new race and ethnicity column now that we’ve
explicitly transformed 7’s and 9’s to NA. There’s nothing “new” in the code below, so we’re
not going to explain it line-by-line. However, it’s a little bit dense, so we recommend that you
take a few minutes to review it thoroughly and make sure you understand what each line is
doing.

demographics %>%
mutate(

# Recode 7 and 9 to missing
race_recode = if_else(race == 7 | race == 9, NA_real_, race),
hispanic_recode = if_else(hispanic == 7 | hispanic == 9, NA_real_, hispanic),
race_eth_4cat = case_when(
# White, non-Hispanic
race_recode == 1 & hispanic_recode == 0 ~ 1,
# Black, non-Hispanic
race_recode == 2 & hispanic_recode == 0 ~ 2,
# American Indian or Alaskan Native to Other race, non-Hispanic
race_recode == 3 & hispanic_recode == 0 ~ 4,
# Asian to Other race, non-Hispanic
race_recode == 4 & hispanic_recode == 0 ~ 4,
# Pacific Islander to Other race, non-Hispanic
race_recode == 4 & hispanic_recode == 0 ~ 4,
# Hispanic, any race
hispanic_recode == 1 ~ 3

)
)

# A tibble: 10 x 7
id age race hispanic race_recode hispanic_recode race_eth_4cat

<int> <int> <dbl> <dbl> <dbl> <dbl> <dbl>
1 1 15 1 7 1 NA NA
2 2 19 2 0 2 0 2
3 3 14 1 1 1 1 3
4 4 3 4 0 4 0 4
5 5 10 7 1 NA 1 3
6 6 18 1 0 1 0 1
7 7 22 2 1 2 1 3
8 8 11 9 9 NA NA NA

493



9 9 5 1 0 1 0 1
10 10 NA 3 1 3 1 3

The code above works, and it is very explicit. However, we can definitely make it more succinct
and easier to read. For example:

demographics %>%
mutate(

race_eth_4cat = case_when(
is.na(hispanic) | hispanic %in% c(7, 9) ~ NA_real_, # Unknown ethnicity
hispanic == 1 ~ 3, # Hispanic, any race
is.na(race) | race %in% c(7, 9) ~ NA_real_, # non-Hispanic, unknown race
race == 1 ~ 1, # White, non-Hispanic
race == 2 ~ 2, # Black, non-Hispanic
TRUE ~ 4 # Other race, non-Hispanic

)
)

# A tibble: 10 x 5
id age race hispanic race_eth_4cat

<int> <int> <dbl> <dbl> <dbl>
1 1 15 1 7 NA
2 2 19 2 0 2
3 3 14 1 1 3
4 4 3 4 0 4
5 5 10 7 1 3
6 6 18 1 0 1
7 7 22 2 1 3
8 8 11 9 9 NA
9 9 5 1 0 1
10 10 NA 3 1 3

�Here’s what we did above:

• We used dplyr’s case_when() function to create a new column in our data frame
(race_eth_4cat) that categorized each participant into one of 4 race and ethnicity cat-
egories depending on their values in the race column and the hispanic column.

• Compared to the first method we used, the second method doesn’t explicitly create new
race and hispanic columns with the 7’s and 9’s recoded to NA. In the second method,
those columns aren’t needed.

494



• The very first two-sided formula tells case_when() to set the value of race_eth_4cat
to NA_real_ when the value of hispanic is missing.

– We put this two-sided formula first because if we don’t know a person’s Hispanic
ethnicity, then we can’t put them into any category of race_eth_4cat. All cat-
egories of race_eth_4cat are dependent on a known value for hispanic. For
example, look at participant number 1. They reported being white, but they don’t
give their ethnicity. Which category do we put them in? We can’t put them in
White, non-Hispanic because they very well could be Hispanic. We can’t put
them in Hispanic, any race because they very well could be non-Hispanic. We
don’t know. We never will. We code them as missing and don’t evaluate any further.
And because case_when() is lazy, any other participants with a missing value for
hispanic would also only have this first two-sided formula evaluated.

– There were no actual NA values in the hispanic column, but we put it in the code
for completeness. There will be some true missing (NA) values in most real-world
data sets.

– Notice that we finally used the %in% operator above (hispanic %in% c(7, 9)).
This is equivalent to typing hispanic == 7 | hispanic == 9. Notice that’s an
OR. In this case, it doesn’t save us a ton of typing and visual clutter, but in many
cases it can.

• The second two-sided formula tells case_when() to set the value of race_eth_4cat to 3
(i.e., Hispanic any-race) when the value of hispanic is 1. Why did we put this second?
If we know that someone is Hispanic, does it matter what race they reported? Nope! No
matter what race they reported (even missing race) they get coded as Hispanic, any
race. And because case_when() is lazy, putting this two-sided formula second has two
advantages:

– Any other participants with a value of 1 for hispanic would only have the first
two two-sided formulas evaluated. In other words, for each Hispanic participant,
R would only evaluate 2 two-sided formulas instead of the 6 we used in the first
method. With only 10 participants in the data, we won’t notice any performance
improvement. But, this performance improvement can add up when we have thou-
sands or millions of rows.

– It allows us to remove the hispanic == 0 from the remaining two-sided formulas.
Think about it. All participants with a missing value for hispanic were accounted
for in the first two-sided formula. All participants with a 1 for hispanic were
accounted for in the second two-sided formula. By definition, any participant left
in the data must have a value of 0 for hispanic. There’s no need to write that
code and there’s no need for R to evaluate that condition. Less typing for us and
further performance improvements to boot.

495



• The third two-sided formula tells case_when() to set the value of race_eth_4cat to
NA_real_ when the value of race is missing. At this point in the code, there are no
participants left with a value of 1 for hispanic. Therefore, if they are missing a value
for race we won’t be able to assign them a value for race_eth_4cat. We code them as
missing and don’t evaluate any further.

• The fourth and fifth two-sided formulas tell case_when() to set the value of
race_eth_4cat to 1 and 2 respectively when the value of race is 1 and 2.

• The final two-sided formula is simply TRUE ~ 4. This tells case_when() to set the value
of race_eth_4cat to 4 when none of the other two-sided formulas above evaluated to
TRUE. Why did we do this? Well, every participant with missing data has been accounted
for, every Hispanic participant has been accounted for, every White, non-Hispanic
participant has been accounted for, and every Black, non-Hispanic participant has
been accounted for. Because case_when() is lazy, we know that any participant that
makes it to this part of the code must fall into the Other race, non-Hispanic category.

– Notice that there is nothing at all about race or hispanic in this two-sided formula.
It just says TRUE. What does case_when() do when a condition on the left-hand
side evaluates to TRUE? It returns the value on the right-hand side. In this case 4.

Warning

Sometimes, adding an a final TRUE condition like the one above can be really useful.
However, we have to be really careful. We can easily get unintended results if we aren’t
absolutely sure that we’ve already accounted for every possible combination of relevant
conditions in the two-sided formulas that come before.

Let’s go ahead and wrap up this chapter with one consolidated code chunk that cleans our
demographics data:

demographics %>%
# Recode variables
mutate(

# Collapse continuous age into 3 categories
age_3cat = case_when(
age < 12 ~ 1, # child
age < 18 ~ 2, # adolescent
age >= 18 ~ 3 # adult

),
age_3cat_f = factor(
age_3cat,
labels = c("child", "adolescent", "adult")

),

496



# Combine race and ethnicity
race_eth_4cat = case_when(
is.na(hispanic) | hispanic %in% c(7, 9) ~ NA_real_, # Unknown ethnicity
hispanic == 1 ~ 3, # Hispanic, any race
is.na(race) | race %in% c(7, 9) ~ NA_real_, # non-Hispanic, unknown race
race == 1 ~ 1, # White, non-Hispanic
race == 2 ~ 2, # Black, non-Hispanic
TRUE ~ 4 # Other race, non-Hispanic

),
race_eth_4cat_f = factor(
race_eth_4cat,
labels = c(
"White, non-Hispanic", "Black, non-Hispanic", "Hispanic, any race",
"Other race, non-Hispanic"

)
)

)

# A tibble: 10 x 8
id age race hispanic age_3cat age_3cat_f race_eth_4cat race_eth_4cat_f

<int> <int> <dbl> <dbl> <dbl> <fct> <dbl> <fct>
1 1 15 1 7 2 adolescent NA <NA>
2 2 19 2 0 3 adult 2 Black, non-Hisp~
3 3 14 1 1 2 adolescent 3 Hispanic, any r~
4 4 3 4 0 1 child 4 Other race, non~
5 5 10 7 1 1 child 3 Hispanic, any r~
6 6 18 1 0 3 adult 1 White, non-Hisp~
7 7 22 2 1 3 adult 3 Hispanic, any r~
8 8 11 9 9 1 child NA <NA>
9 9 5 1 0 1 child 1 White, non-Hisp~
10 10 NA 3 1 NA <NA> 3 Hispanic, any r~

Now that we’ve mastered conditional operations, we can use them to help us navigate another
common data collection technique in epidemiology – skip patterns.

497



31 Working with Multiple Data Frames

Up to this point, the data we’ve needed has always been stored in a single data frame. However,
that won’t always be the case. At times we may need to combine data from multiple agencies
in order to complete your analysis.

Additionally, large studies often gather data at multiple sites.

498



Or, data is sometimes gathered over long periods of time. When this happens, it is not
uncommon for observations across the study sites or times to be stored as separate data
sets.

Another common scenario in which you end up with multiple data sets for the same study is

499



when researchers use different data sets to record the results of different survey instruments
or groups of similar instruments.

In any of these cases, you may need to combine data from across data sets in order to complete
your analysis.

500



This combining of data comes in two basic forms: combining vertically and combining hori-
zontally. First we’ll learn about combining vertically, or adding rows. Later, we’ll learn about
combining horizontally, or adding columns.

Below we have two separate data frames - data frame one and data frame two. In this case
both data frames contain the exact same variables: Var1, Var2, and Var3. However, they
aren’t identical because they contain different observations.

Now, you want to combine these two data frames and end up with one data frame that includes
the observations from data frame two listed directly below the observations from data frame
one. This is a situation where we want to combine data frames vertically.

501



When combining data frames vertically, one of the most important questions to ask is, “do the
data frames have variables in common?” Just by examining data frame one and data frame
two, you can see that the variables have the same names. How can you check to make sure that
the variables also contain the same type of data? Well, you can use the str() or glimpse()
functions to compare the details of the columns in the two data frames.

Sometimes, you might find that columns that have different names across data frames contain
the same data. For example, suppose that data frame one has a variable named ID and data
frame two has a variable named subject ID. In this situation you might want R to combine
these two variables when you combine data frames.

On the other hand, you may find that variables that have the same name across data frames,
actually contain different data. For example, both data frames may contain the variable date.
But, one date variable might store birth date and the other might store date of admission.
You would not want to combine these two variables.

As you may have guessed, when combining data frames vertically, it’s easiest to combine data
frames that have identical variables. However, you will also learn how to combine data frames
that have different variables.

31.1 Combining data frames vertically: Adding rows

Suppose you are working on a multisite clinical trial recruiting participants over multiple years.
You have a data frame named Trial, that stores the number of participants recruited each year,

502



as well as the number of participants who experienced the outcome of interest. Another data
frame named Trial_2020 was just sent to you with the recruitment numbers for the year
2020.

You want to add the observations about the participants recruited in 2020 to the master data
frame so that it contains the information about all years. To do this, you bind the rows in the
trial_2020 data frame to the trial data frame.

Let’s go ahead and load dplyr:

library(dplyr)

And simulate our data frames:

trial <- tibble(
year = c(2016, 2017, 2018, 2019),
n = c(501, 499, 498, 502),
outcome = c(51, 52, 49, 50)

) %>%
print()

# A tibble: 4 x 3
year n outcome

503



<dbl> <dbl> <dbl>
1 2016 501 51
2 2017 499 52
3 2018 498 49
4 2019 502 50

trial_2020 <- tibble(
year = 2020,
n = 500,
outcome = 48

) %>%
print()

# A tibble: 1 x 3
year n outcome
<dbl> <dbl> <dbl>

1 2020 500 48

we can see above that column names and types in both data frames are identical. In this case,
we can easily bind them together vertically with dplyr’s bind_rows() function:

trial %>%
bind_rows(trial_2020)

# A tibble: 5 x 3
year n outcome
<dbl> <dbl> <dbl>

1 2016 501 51
2 2017 499 52
3 2018 498 49
4 2019 502 50
5 2020 500 48

�Here’s what we did above:

• we used dplyr’s bind_rows() function to vertically stack, or bind, the rows in
trial_2020 to the rows in trials.

• You can type ?bind_rows into your R console to view the help documentation for this
function and follow along with the explanation below.

• The first argument to the bind_rows() function is the ... argument. Typically, we will
pass one or more data frames that we want to combine to the ... argument.

504



31.1.1 Combining more than 2 data frames

What if we want to vertically combine more than two data frames? This isn’t a problem.
Thankfully, bind_rows() lets us pass as many data frames as we want to the ... argument.
For example:

trial_2021 <- tibble(
year = 2021,
n = 598,
outcome = 57

) %>%
print()

# A tibble: 1 x 3
year n outcome
<dbl> <dbl> <dbl>

1 2021 598 57

trial %>%
bind_rows(trial_2020, trial_2021)

# A tibble: 6 x 3
year n outcome
<dbl> <dbl> <dbl>

1 2016 501 51
2 2017 499 52
3 2018 498 49
4 2019 502 50
5 2020 500 48
6 2021 598 57

31.1.2 Adding rows with differing columns

What happens when the data frames we want to combine don’t have identical sets of columns?
For example, let’s say that we started collecting data on adverse events for the first time in
2020. In this case, trials_2020 would contain a column that trials doesn’t contain. Can
we still row bind our two data frames? Let’s see:

505



trial_2020 <- tibble(
year = 2020,
n = 500,
outcome = 48,
adv_event = 3 # Here is the new column

) %>%
print()

# A tibble: 1 x 4
year n outcome adv_event
<dbl> <dbl> <dbl> <dbl>

1 2020 500 48 3

trial %>%
bind_rows(trial_2020)

# A tibble: 5 x 4
year n outcome adv_event
<dbl> <dbl> <dbl> <dbl>

1 2016 501 51 NA
2 2017 499 52 NA
3 2018 498 49 NA
4 2019 502 50 NA
5 2020 500 48 3

we sure can! R just sets the value of adv_event to NA in the rows that came from the trial
data frame.

31.1.3 Differing column positions

Next, let’s say that the person doing data entry accidently put the columns in a different order
in 2020. Is bind_rows() able to figure out which columns go together?

trial_2020 <- tibble(
year = 2020,
n = 500,
adv_event = 3, # This was previously the fourth column
outcome = 48 # This is the thrid column in trial

) %>%
print()

506



# A tibble: 1 x 4
year n adv_event outcome
<dbl> <dbl> <dbl> <dbl>

1 2020 500 3 48

trial %>%
bind_rows(trial_2020)

# A tibble: 5 x 4
year n outcome adv_event
<dbl> <dbl> <dbl> <dbl>

1 2016 501 51 NA
2 2017 499 52 NA
3 2018 498 49 NA
4 2019 502 50 NA
5 2020 500 48 3

Yes! The bind_rows() function binds the data frames together based on column names. So,
having our columns in a different order in the two data frames isn’t a problem. But, what
happens when we have different column names?

31.1.4 Differing column names

As a final wrinkle, let’s say that the person doing data entry started using different column
names in 2020 as well. For example, below, the n column is now named count and the outcome
column is now named outcomes. Will bind_rows() still be able to vertically combine these
data frames?

trial_2020 <- tibble(
year = 2020,
count = 500,
adv_event = 3,
outcomes = 48

) %>%
print()

# A tibble: 1 x 4
year count adv_event outcomes
<dbl> <dbl> <dbl> <dbl>

1 2020 500 3 48

507



trial %>%
bind_rows(trial_2020)

# A tibble: 5 x 6
year n outcome count adv_event outcomes
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 2016 501 51 NA NA NA
2 2017 499 52 NA NA NA
3 2018 498 49 NA NA NA
4 2019 502 50 NA NA NA
5 2020 NA NA 500 3 48

In this case, bind_rows() plays it safe and doesn’t make any assumptions about whether
columns with different names belong together or not. However, we only need to rename the
columns in one data frame or the other to fix this problem. We could do this in separate steps
like this:

trial_2020_rename <- trial_2020 %>%
rename(

n = count,
outcome = outcomes

)

trial %>%
bind_rows(trial_2020_rename)

# A tibble: 5 x 4
year n outcome adv_event
<dbl> <dbl> <dbl> <dbl>

1 2016 501 51 NA
2 2017 499 52 NA
3 2018 498 49 NA
4 2019 502 50 NA
5 2020 500 48 3

Or, we could rename and bind in a single step by nesting functions like this:

trial %>%
bind_rows(

trial_2020 %>%

508



rename(
n = count,
outcome = outcomes

)
)

# A tibble: 5 x 4
year n outcome adv_event
<dbl> <dbl> <dbl> <dbl>

1 2016 501 51 NA
2 2017 499 52 NA
3 2018 498 49 NA
4 2019 502 50 NA
5 2020 500 48 3

�Here’s what we did above:

• we nested the code that we previously used to create the trial_2020_rename data frame
inside of the bind_rows() function instead creating the actual trial_2020_rename data
frame and passing it to bind_rows().

• I don’t think you can really say that one method is “better” or “worse”. The first method
requires two steps and creates a data frame in our global environment that we may or
may not ever need again (i.e., potentially just clutter). However, one could make an
argument that the first method is also easier to glance at and read. I would typically
use the second method, but this is really just a personal preference in this case.

And that’s pretty much it. The bind_rows() function makes it really easy to combine R data
frames vertically. Next, let’s learn how to combine data frames horizontally.

31.2 Combining data frames horizontally: Adding columns

In this section we will once again begin with two separate data frames - data frame one and
data frame two. But, unlike before, these data frames share only one variable in common.
And, the data contained in both data frames pertains to the same observations.

509



Our goal is once again to combine these data frames. But, this time we want to combine them
horizontally. In other words, we want a combined data frame that combines all the columns
from data frame one and data frame two.

Combining data frames horizontally can be slightly more complicated than combining them

510



vertically. As shown in the following flow chart, we can either match the rows of our two data
frames up by position or by key values.

31.2.1 Combining data frames horizontally by position

In the simplest case, we match the rows in our data frames up by position. In other words,
row 1 in data frame one is matched up with row 1 in data frame two, row 2 in data frame
one is matched up with row 2 in data frame two, and so on. Row n (meaning, any number)
in data frame one always gets matched to row n in data frame two, regardless of the values in
any column of those rows.

511



Combining data frames horizontally by position is very easy in R. We just use dplyr’s
bind_cols() function similarly to the way used bind_rows() above. Just remember that
when we horizontally combine data frames by position both data frames must have the same
number of rows. For example:

df1 <- tibble(
color = c("red", "green", "blue"),
size = c("small", "medium", "large")

) %>%
print()

# A tibble: 3 x 2
color size
<chr> <chr>

1 red small
2 green medium
3 blue large

df2 <- tibble(
amount = c(1, 4, 3),
dose = c(10, 20, 30)

) %>%
print()

512



# A tibble: 3 x 2
amount dose
<dbl> <dbl>

1 1 10
2 4 20
3 3 30

df1 %>%
bind_cols(df2)

# A tibble: 3 x 4
color size amount dose
<chr> <chr> <dbl> <dbl>

1 red small 1 10
2 green medium 4 20
3 blue large 3 30

�Here’s what we did above:

• we used dplyr’s bind_cols() function to horizontally bind the columns in df1 to the
columns in df2.

• You can type ?bind_cols into your R console to view the help documentation for this
function and follow along with the explanation below.

• The only argument to the bind_cols() function is the ... argument. Typically, we
will pass one or more data frames that we want to combine to the ... argument.

In general, it’s a bad idea to combine data frames that contain different kinds of information
(i.e., variables) about the same set of people (or places or things) in this way. It’s difficult to
ensure that the information in row n in both data frames is really about the same person (or
place or thing). However, we do sometimes find bind_cols() to be useful when we’re writing
our own functions in R. We haven’t quite learned how to do that yet, but we will soon.

31.2.2 Combining data frames horizontally by key values

In all the examples from here on out we will match the rows of our data frames by one or more
key values.

513



In epidemiology, the term I most often hear used for combining data frames in this way is
merging. So, I will mostly use that term below. However, in other disciplines it is common to
use the term joining, or performing a data join, to mean the same thing. The dplyr package,
in specific, refers to these as “mutating joins.”

31.2.2.1 Relationship types

When we merge data frames it’s important to ask ourselves, “what is the relationship between
the observations in the original data frames?” The observations can be related in several
different ways.

In a one-to-one relationship, a single observation in one data frame is related to no more than
one observation in the other data frame. We know how to align, or connect, the rows in the
two data frames based on the values of one or more common variables.

514



This common variable, or set of common variables, is also called a key. When we use the
values in the key to match rows in our data frames, we can say that we are matching on key
values.

In the example above, There is one key column – Var1. Both data frames contain the column
named Var1, and the values of that column tell R how to align the rows in both data frames
so that all the values in that row contain data are about the same person, place, or thing. In
the example above, we know that the first row of data frame one goes with the second row of
data frame two because both rows have the same key value – 1.

In a one-to-many relationship, a single observation in one data frame is related to multiple
observations in the other data frame.

515



And finally, in a many-to-many relationship, multiple observations in one data frame are
related to multiple observations in the other data frame.

Many-to-many relationships are messy and are generally best avoided, if possible. In prac-
tice, we’re not sure that we’ve ever merged two data frames that had a true many-to-many

516



relationship. We emphasize true because we have definitely merged data frames that had a
many-to-many relationship when matching on a single key column. However, after matching
on multiple key columns (e.g., study id and date instead of just study id), the relationship
became one-to-one or one-to-many. We’ll see an example of matching on multiple key columns
later.

31.2.2.2 dplyr join types

In this chapter, we will merge data frames using one of dplyr’s four mutating join functions.

The first three arguments to all four of dplyr’s mutating join functions are: x, y, and by.
You should pass the names of the data frames you want to merge to the x and y arguments
respectively. You should pass the name(s) of the key column(s) to the by argument. In many
cases, you will get a different merge result depending on which data frame you pass to the x
and y arguments, and which mutating join function you use. Below, we will give you a brief
overview of each of the mutating join functions, and then we will jump into some examples.

The four mutating join functions are:

1. left_join(). This is probably the join function that you will use the most. It’s im-
portant to remember that left_join() keeps all the rows from the x data frame in the
resulting combined data frame. However, it only keeps the rows from the y data frame
that have a key value match in the x data frame. The values for columns with no key
value match in the opposite data frame are set to NA.

517



2. right_join(). This is just the mirror opposite of left_join(). Accordingly,
right_join() keeps all the rows from the y data frame in the resulting combined data
frame, and only keep the rows from the x data frame that have a key value match in
the y data frame. The values for columns with no key value match in the opposite data
frame are set to NA.

3. full_join(). Full join keeps all the rows from both data frames in the resulting com-
bined data frame. The values for columns with no key value match in the opposite data
frame are set to NA.

518



4. inner_join(). Inner join keeps only the rows from both data frames that have a key
value match in the opposite data frame in the resulting combined data frame.

Now that we have a common vocabulary, let’s take a look at some more concrete examples.

519



Suppose we are analyzing data from a study of aging and functional ability. At baseline, we
assigned a study id to each of our participants. We then ask them their date of birth and their
race and ethnicity. We saved that information in a data frame called demographics.

demographics <- tibble(
id = c("1001", "1002", "1003", "1004"),
dob = as.Date(c("1968-12-14", "1952-08-03", "1949-05-27", "1955-03-12")),
race_eth = c(1, 2, 2, 4)

) %>%
print()

# A tibble: 4 x 3
id dob race_eth
<chr> <date> <dbl>

1 1001 1968-12-14 1
2 1002 1952-08-03 2
3 1003 1949-05-27 2
4 1004 1955-03-12 4

Then, we asked our participants to do a series of functional tests. The functional tests included
measuring grip strength in their right hand (grip_r) and grip strength in their left hand
(grip_l). We saved each measure, along with their study id, in a separate data frame called
grip_strength.

grip_strength <- tibble(
id = c("1002", "1001", "1003", "1004"),
grip_r = c(32, 28, 32, 22),
grip_l = c(30, 30, 28, 22)

) %>%
print()

# A tibble: 4 x 3
id grip_r grip_l
<chr> <dbl> <dbl>

1 1002 32 30
2 1001 28 30
3 1003 32 28
4 1004 22 22

Now, we want to merge these two data frames together so that we can include age,
race/ethnicity, and grip strength in our analysis.

520



Let’s first ask ourselves, “what is the relationship between the observations in demographics
and the observations in grip_strength?”

31.2.2.3 One-to-one relationship merge

It’s a one-to-one relationship because each participant in demographics has no more than one
corresponding row in grip_strength. Since both data frames have exactly four rows, we can
go ahead hand combine them horizontally using bind_cols() like this:

demographics %>%
bind_cols(grip_strength)

New names:
* `id` -> `id...1`
* `id` -> `id...4`

# A tibble: 4 x 6
id...1 dob race_eth id...4 grip_r grip_l
<chr> <date> <dbl> <chr> <dbl> <dbl>

1 1001 1968-12-14 1 1002 32 30
2 1002 1952-08-03 2 1001 28 30
3 1003 1949-05-27 2 1003 32 28
4 1004 1955-03-12 4 1004 22 22

�Here’s what we did above:

• we used dplyr’s bind_cols() function to horizontally bind the columns in demographics
to the columns in grip_strength. This was a bad idea!

• Notice the message that bind_cols() gave us this time: New names: * id -> id...1
* id -> id...2. This is telling us that both data frames had a column named id. If
bind_cols() had left the column names as-is, then the resulting combined data frame
would have had two columns named id, which isn’t allowed.

• More importantly, notice the demographic data for participant 1001 is now aligned
with the grip strength data for participant 1002, and vice versa. The grip strength data
was recorded in the order that participants came in to have their grip strength measured.
In this case, participant 1002 came in before 1001. Remember that bind_cols() matches
rows by position, which results in mismatched data in this case.

521



Now, let’s learn a better way to merge these two data frames – dplyr’s left_join() func-
tion:

demographics %>%
left_join(grip_strength, by = "id")

# A tibble: 4 x 5
id dob race_eth grip_r grip_l
<chr> <date> <dbl> <dbl> <dbl>

1 1001 1968-12-14 1 28 30
2 1002 1952-08-03 2 32 30
3 1003 1949-05-27 2 32 28
4 1004 1955-03-12 4 22 22

�Here’s what we did above:

• we used dplyr’s left_join() function to perform a one-to-one merge of the
demographics data frame with the grip_strength data frame.

• You can type ?left_join into your R console to view the help documentation for this
function and follow along with the explanation below.

• The first argument to the left_join() function is the x argument. You should pass a
data frame to the x argument.

• The second argument to the left_join() function is the y argument. You should pass
a data frame to the y argument.

• The third argument to the left_join() function is the by argument. You should pass
the name of the column, or columns, that contain the key values. The column name
should be wrapped in quotes.

• Notice that the demographics and grip strength data are now correctly aligned for partic-
ipants 1001 and 1002 even though they were still misaligned in the original data frames.
That’s because row position is irrelevant when we match by key values.

• Notice that the result above only includes a single id column. This is because we aren’t
simply smooshing two data frames together, side-by-side. We are integrating information
from across the two data frames based on the value of the key column – id.

The merge we did above is about as simple as it gets. It was a one-to-one merge where every
key value in the x data frame had one, and only one, matching key value in the y data frame.
Therefore, in this simple case, all four join types give us the same result:

522



# Right join
demographics %>%
right_join(grip_strength, by = "id")

# A tibble: 4 x 5
id dob race_eth grip_r grip_l
<chr> <date> <dbl> <dbl> <dbl>

1 1001 1968-12-14 1 28 30
2 1002 1952-08-03 2 32 30
3 1003 1949-05-27 2 32 28
4 1004 1955-03-12 4 22 22

# Full join
demographics %>%
full_join(grip_strength, by = "id")

# A tibble: 4 x 5
id dob race_eth grip_r grip_l
<chr> <date> <dbl> <dbl> <dbl>

1 1001 1968-12-14 1 28 30
2 1002 1952-08-03 2 32 30
3 1003 1949-05-27 2 32 28
4 1004 1955-03-12 4 22 22

# Inner join
demographics %>%
inner_join(grip_strength, by = "id")

# A tibble: 4 x 5
id dob race_eth grip_r grip_l
<chr> <date> <dbl> <dbl> <dbl>

1 1001 1968-12-14 1 28 30
2 1002 1952-08-03 2 32 30
3 1003 1949-05-27 2 32 28
4 1004 1955-03-12 4 22 22

Additionally, aside from the order of the rows and columns in the resulting combined data
frame, it makes no difference which data frame you pass to the x and y arguments in this
case:

523



# Switching order
grip_strength %>%
left_join(demographics, by = "id")

# A tibble: 4 x 5
id grip_r grip_l dob race_eth
<chr> <dbl> <dbl> <date> <dbl>

1 1002 32 30 1952-08-03 2
2 1001 28 30 1968-12-14 1
3 1003 32 28 1949-05-27 2
4 1004 22 22 1955-03-12 4

As our merges get more complex, we will get different results depending on which join function
we choose and the ordering in which we pass our data frames to the x and y arguments. We’re
not going to attempt to cover every possible combination. But, we are going to try to give you
a flavor for some of the scenarios we believe you are most likely to encounter in practice.

31.2.2.4 Differing rows

In the real world, participants don’t always attend scheduled visits. Let’s suppose that there
was actually a fifth participant that we collected baseline data from:

demographics <- tibble(
id = c("1001", "1002", "1003", "1004", "1005"),
dob = as.Date(c(

"1968-12-14", "1952-08-03", "1949-05-27", "1955-03-12", "1942-06-07"
)),
race_eth = c(1, 2, 2, 4, 3)

) %>%
print()

# A tibble: 5 x 3
id dob race_eth
<chr> <date> <dbl>

1 1001 1968-12-14 1
2 1002 1952-08-03 2
3 1003 1949-05-27 2
4 1004 1955-03-12 4
5 1005 1942-06-07 3

524



However, participant 1005 never made it back in for a grip strength test. Now, what do you
think will happen when we merge demographics and grip_strength using left_join()?

demographics %>%
left_join(grip_strength, by = "id")

# A tibble: 5 x 5
id dob race_eth grip_r grip_l
<chr> <date> <dbl> <dbl> <dbl>

1 1001 1968-12-14 1 28 30
2 1002 1952-08-03 2 32 30
3 1003 1949-05-27 2 32 28
4 1004 1955-03-12 4 22 22
5 1005 1942-06-07 3 NA NA

The resulting data frame includes all rows from the demographics data frame and all the
rows from the grip_strength data frame. Because participant 1005 never had their grip
strength measured, and therefore, had no rows in the grip_strength data frame, their values
for grip_r and grip_l are set to missing.

This scenario is a little a different than the one above. It’s still a one-to-one relationship because
each participant in demographics has no more than one corresponding row in grip_strength.
However, every key value in the x data frame no longer has one, and only one, matching key
value in the y data frame. Therefore, we will now get different results depending on which join
function we choose, and the order in which we pass our data frames to the x and y arguments.
Before reading further, think about what you expect the results from each join function to
look like. Think about what you expect the results of switching the data frame order to look
like.

# Right join
demographics %>%
right_join(grip_strength, by = "id")

# A tibble: 4 x 5
id dob race_eth grip_r grip_l
<chr> <date> <dbl> <dbl> <dbl>

1 1001 1968-12-14 1 28 30
2 1002 1952-08-03 2 32 30
3 1003 1949-05-27 2 32 28
4 1004 1955-03-12 4 22 22

525



# Full join
demographics %>%
full_join(grip_strength, by = "id")

# A tibble: 5 x 5
id dob race_eth grip_r grip_l
<chr> <date> <dbl> <dbl> <dbl>

1 1001 1968-12-14 1 28 30
2 1002 1952-08-03 2 32 30
3 1003 1949-05-27 2 32 28
4 1004 1955-03-12 4 22 22
5 1005 1942-06-07 3 NA NA

# Inner join
demographics %>%
inner_join(grip_strength, by = "id")

# A tibble: 4 x 5
id dob race_eth grip_r grip_l
<chr> <date> <dbl> <dbl> <dbl>

1 1001 1968-12-14 1 28 30
2 1002 1952-08-03 2 32 30
3 1003 1949-05-27 2 32 28
4 1004 1955-03-12 4 22 22

# Switching order
grip_strength %>%
left_join(demographics, by = "id")

# A tibble: 4 x 5
id grip_r grip_l dob race_eth
<chr> <dbl> <dbl> <date> <dbl>

1 1002 32 30 1952-08-03 2
2 1001 28 30 1968-12-14 1
3 1003 32 28 1949-05-27 2
4 1004 22 22 1955-03-12 4

Well, were those the results you expected? In practice, the “correct” result depends on what
we are trying to do. In the scenario above, we would probably tend to want the result from
left_join() or full_join() in most cases. The reason is that it’s much harder to add data
into our analysis that never made it into our combined data frame than it is to drop rows from
our results data frame that we don’t need for our analysis.

526



31.2.2.5 Differing key column names

Sometimes the key columns will have different names across data frames. For example, let’s
imagine that the team collecting the grip strength data named the participant id column pid
instead of id:

grip_strength <- tibble(
pid = c("1002", "1001", "1003", "1004"),
grip_r = c(32, 28, 32, 22),
grip_l = c(30, 30, 28, 22)

) %>%
print()

# A tibble: 4 x 3
pid grip_r grip_l
<chr> <dbl> <dbl>

1 1002 32 30
2 1001 28 30
3 1003 32 28
4 1004 22 22

If we try to merge demographics and grip_strength as we did before, we will get an error.

demographics %>%
left_join(grip_strength, by = "id")

Error in `left_join()`:
! Join columns in `y` must be present in the data.
x Problem with `id`.

This error is left_join() telling us that it couldn’t find a column named id in both data
frames. To get around this error, we can simply tell left_join() which column is the matching
key column in the opposite data frame using a named vector like this:

demographics %>%
left_join(grip_strength, by = c("id" = "pid"))

# A tibble: 5 x 5
id dob race_eth grip_r grip_l
<chr> <date> <dbl> <dbl> <dbl>

527



1 1001 1968-12-14 1 28 30
2 1002 1952-08-03 2 32 30
3 1003 1949-05-27 2 32 28
4 1004 1955-03-12 4 22 22
5 1005 1942-06-07 3 NA NA

Just make sure that the first column name you pass to the named vector (i.e., "id") is the
name of the key column in the x data frame and that the second column name you pass to
the named vector (i.e., "pid") is the name of the key column in the y data frame.

31.2.2.6 One-to-many relationship merge

Now suppose that our grip strength study has a longitudinal design. The demographics data
was only collected at enrollment into the study. After all, race and dob don’t change. There’s
no need to ask our participants about them at every follow-up interview.

demographics

# A tibble: 5 x 3
id dob race_eth
<chr> <date> <dbl>

1 1001 1968-12-14 1
2 1002 1952-08-03 2
3 1003 1949-05-27 2
4 1004 1955-03-12 4
5 1005 1942-06-07 3

Grip strength, however, was measured pre and post some intervention.

grip_strength <- tibble(
id = rep(c("1001", "1002", "1003", "1004"), each = 2),
visit = rep(c("pre", "post"), 4),
grip_r = c(32, 33, 28, 27, 32, 34, 22, 27),
grip_l = c(30, 32, 30, 30, 28, 30, 22, 26)

) %>%
print()

# A tibble: 8 x 4
id visit grip_r grip_l
<chr> <chr> <dbl> <dbl>

528



1 1001 pre 32 30
2 1001 post 33 32
3 1002 pre 28 30
4 1002 post 27 30
5 1003 pre 32 28
6 1003 post 34 30
7 1004 pre 22 22
8 1004 post 27 26

Now what is the relationship of these two data frames?

These data frames have a one-to-many relationship because at least one observation in one
data frame is related to multiple observations in the other data frame. The demographics
data frame has one observation for each value of id. The grip_strength data frame has two
observations for each value of the id’s 1001 through 1004.

Now, to conduct our analysis, we need to combine the data in demographics with the data in
the longitudinal grip_strength data frame. And how will we ask R to merge these two data
frames? Well, here is some good news. To perform a one-to-many or many-to-many merge,
we use the exact same syntax that we used to perform a one-to-one merge. R will figure out
the relationship between the data frames automatically. Take a look:

demographics %>%
left_join(grip_strength, by = "id")

# A tibble: 9 x 6
id dob race_eth visit grip_r grip_l
<chr> <date> <dbl> <chr> <dbl> <dbl>

1 1001 1968-12-14 1 pre 32 30
2 1001 1968-12-14 1 post 33 32
3 1002 1952-08-03 2 pre 28 30
4 1002 1952-08-03 2 post 27 30
5 1003 1949-05-27 2 pre 32 28
6 1003 1949-05-27 2 post 34 30
7 1004 1955-03-12 4 pre 22 22
8 1004 1955-03-12 4 post 27 26
9 1005 1942-06-07 3 <NA> NA NA

31.2.2.7 Multiple key columns

Let’s throw one more little wrinkle into our analysis. Let’s say that each participant had a
medical exam prior to being sent into the gym to do their functional assessments. The results

529



of that medical exam, along with the participant’s study id, were recorded in the university
hospital system’s electronic medical records. As part of that medical exam, each participant’s
weight was recorded. Luckily, we were given access to the electronic medical records, which
look like this:

emr <- tibble(
id = rep(c("1001", "1002", "1003", "1004"), each = 2),
visit = rep(c("pre", "post"), 4),
weight = c(105, 99, 200, 201, 136, 133, 170, 175)

) %>%
print()

# A tibble: 8 x 3
id visit weight
<chr> <chr> <dbl>

1 1001 pre 105
2 1001 post 99
3 1002 pre 200
4 1002 post 201
5 1003 pre 136
6 1003 post 133
7 1004 pre 170
8 1004 post 175

Now, we would like to add participant weight to our analysis. Our first attempt might look
something like this:

demographics %>%
left_join(grip_strength, emr, by = "id")

# A tibble: 9 x 6
id dob race_eth visit grip_r grip_l
<chr> <date> <dbl> <chr> <dbl> <dbl>

1 1001 1968-12-14 1 pre 32 30
2 1001 1968-12-14 1 post 33 32
3 1002 1952-08-03 2 pre 28 30
4 1002 1952-08-03 2 post 27 30
5 1003 1949-05-27 2 pre 32 28
6 1003 1949-05-27 2 post 34 30
7 1004 1955-03-12 4 pre 22 22
8 1004 1955-03-12 4 post 27 26
9 1005 1942-06-07 3 <NA> NA NA

530



Of course, that doesn’t work because left_join() can only merge two data frames at a time
– x and y. The emr data frame was ignored. Then we think, “hmmm, maybe we should try
merging them sequentially.” In other words, merge demographics and grip_strength first.
Then merge the combined demographics/grip_strength data frame with emr. So, our next
attempt might look like this:

demographics %>%
left_join(grip_strength, by = "id") %>%
left_join(emr, by = "id")

Warning in left_join(., emr, by = "id"): Detected an unexpected many-to-many relationship between `x` and `y`.
i Row 1 of `x` matches multiple rows in `y`.
i Row 1 of `y` matches multiple rows in `x`.
i If a many-to-many relationship is expected, set `relationship =
"many-to-many"` to silence this warning.

# A tibble: 17 x 8
id dob race_eth visit.x grip_r grip_l visit.y weight
<chr> <date> <dbl> <chr> <dbl> <dbl> <chr> <dbl>

1 1001 1968-12-14 1 pre 32 30 pre 105
2 1001 1968-12-14 1 pre 32 30 post 99
3 1001 1968-12-14 1 post 33 32 pre 105
4 1001 1968-12-14 1 post 33 32 post 99
5 1002 1952-08-03 2 pre 28 30 pre 200
6 1002 1952-08-03 2 pre 28 30 post 201
7 1002 1952-08-03 2 post 27 30 pre 200
8 1002 1952-08-03 2 post 27 30 post 201
9 1003 1949-05-27 2 pre 32 28 pre 136
10 1003 1949-05-27 2 pre 32 28 post 133
11 1003 1949-05-27 2 post 34 30 pre 136
12 1003 1949-05-27 2 post 34 30 post 133
13 1004 1955-03-12 4 pre 22 22 pre 170
14 1004 1955-03-12 4 pre 22 22 post 175
15 1004 1955-03-12 4 post 27 26 pre 170
16 1004 1955-03-12 4 post 27 26 post 175
17 1005 1942-06-07 3 <NA> NA NA <NA> NA

But, if you look closely, that isn’t what we want either. Each participant didn’t have
four visits. They only had two. Here’s the problem. Each participant in the combined
demographics/grip_strength data frame has two rows (i.e., one for pre and one for post).
Each participant in the emr data frame also has two rows (i.e., one for pre and one for post).

531



Above, we told left_join() to join by id. So, left_join() aligns all rows with matching
key values – id’s.

For example, row one in the combined demographics/grip_strength data frame has the key
value 1001. So, left_join() aligns row one in the combined demographics/grip_strength
data frame with rows one and two in the emr data frame. Next, row two in the combined
demographics/grip_strength data frame has the key value 1001. So, left_join() aligns
row two in the combined demographics/grip_strength data frame with rows one and two in
the emr data frame. This results in 2 * 2 = 4 rows for each id - a many-to-many merge.

But in reality, study id alone no longer uniquely identifies observations in our data. Now,
observations are uniquely identified by study id and visit. For example, 1001 and pre are
a unique observation, 1001 and post are a unique observation, 1002 and pre are a unique
observation, and so on. We now have two key columns that identify unique observations. And
once we give that information to left_join, the relationship between the data frames becomes
a one-to-one relationship. In other words, each observation (defined by id and visit) in one
data frame is related to no more than one observation (defined by id and visit) in the other
data frame.

532



Here is how we tell left_join() to merge our data frames by id and visit:

demographics %>%
left_join(grip_strength, by = "id") %>%
left_join(emr, by = c("id", "visit"))

# A tibble: 9 x 7
id dob race_eth visit grip_r grip_l weight
<chr> <date> <dbl> <chr> <dbl> <dbl> <dbl>

1 1001 1968-12-14 1 pre 32 30 105
2 1001 1968-12-14 1 post 33 32 99
3 1002 1952-08-03 2 pre 28 30 200
4 1002 1952-08-03 2 post 27 30 201
5 1003 1949-05-27 2 pre 32 28 136
6 1003 1949-05-27 2 post 34 30 133
7 1004 1955-03-12 4 pre 22 22 170
8 1004 1955-03-12 4 post 27 26 175
9 1005 1942-06-07 3 <NA> NA NA NA

�Here’s what we did above:

• We used dplyr’s left_join() function to perform a one-to-many merge of
the demographics data frame with the grip_strength data frame. Then,

533



we used left_join() again to perform a one-to-one merge of the combined
demographics/grip_strength data frame with the emr data frame.

• We told left_join() that it needed to match the values in the id key column
and the values in the visit key column in order to align the rows in the combined
demographics/grip_strength data frame with the emr data frame.

We now have a robust set of tools we can use to work with data that is stored in more than
one data frame – a common occurrence in epidemiology!

534



32 Restructuring Data frames

we’ve already seen data frames with a couple of different structures, but we haven’t explicitly
discussed those structures yet. When we say structure, we basically mean the way the data is
organized into columns and rows. Traditionally, data are described as being organized in one
of two ways:

1. With a person-level, or wide, structure. In person-level data, each person (observa-
tional unit) has one observation (row) and a separate column contains data for each
measurement. For example:

Figure 32.1: Baby weights at 3, 6, 9, and 12 months.

2. With a person-period, or long, structure. In the person-period data structure each
person (observational unit) has multiple observations – one for each measurement occa-
sion.

535



Figure 32.2: Baby weights at 3, 6, 9, and 12 months. Babies 1001 and 1002 only.

Note

Often, people are our observational unit in epidemiology. However, our observational
units could also be schools, states, or air quality monitors. It’s the entity from which we
are gathering data.

In some cases, only the person-level data structure will practically make sense. For example,
the table below contains the sex, weight, length, head circumference, and abdominal circum-
ference for eight newborn babies measured cross-sectionally (i.e., at one point in time) at
birth.

536



Figure 32.3: Various measurements take at birth for 8 newborn babies.

In this table, each baby has one observation (row) and a separate column contains data for
each measurement. Further, each measurement is only taken on one occasion. There really is
no other structure that makes sense for this data.

For contrast, the next table below is also person-level data. It contains the weight in pounds
for eight babies at ages 3 months, 6 months, 9 months, and 12 months.

537



Figure 32.4: Baby weights at 3, 6, 9, and 12 months

Notice that each baby still has one, and only one, row. This time, however, there are only 2
measurements – sex and weight. Sex is measured on one occasion, but weight is measured on
four occasions, and a new column is created in the data frame for each subsequent measure of
weight. So, although each baby has a single row in the data, they really have four observations
(i.e., measurement occasions). Notice that this is the first time that we’ve explicitly
drawn a distinction between a row and an observation. Further, unlike the first table
we saw, this table could actually be structured in a different way.

An alternative, and often preferable, data structure for data with repeated measures is the
person-period, or long, data structure. Below, we look at the baby weights again. In the
interest of saving space, we’re only looking at the first two babies from the previous table of
data.

538



Figure 32.5: Baby weights at 3, 6, 9, and 12 months. Babies 1001 and 1002 only.

Notice that each baby in the person-period table has four rows – one for each weight measure-
ment. Also notice that there is a new variable in the person-period data that explicitly records
time (i.e., months).

Note

Let’s quickly learn a couple of new terms: time-varying and time-invariant variables.
In the data above, sex is time invariant. It remains constant over all 4 measurement
occasions for each baby. Not only that, but for all intents and purposes it isn’t really
allowed to change. The weight variable, on the other hand, is time varying. The weight
values change over time. And not only do they change, but the amount, rate, and/or
shape of their change may be precisely what this researcher is interested in.

Below, we can compare the person-level version of the baby weight data to the person-period
version of the baby weight data. we are only including babies 1001 and 1002 in the interest
of saving space. As you can see, given the same data, the person-level structure is wider (i.e.,
more columns) than the person-period data and the person-period structure is longer (i.e.,
more rows) than the person-level data. That’s why the two structures are sometimes referred
to as wide and long respectively.

539



Figure 32.6: Comparing wide and long data for the babies 1001 and 1002.

Ok, so this data can be structured in either a person-level or a person-period format, but
which structure should we use?

Well, in general, we are going to suggest that you use the person-period structure for the kind
of longitudinal data we have above for the following reasons:

1. It contains an explicit time variable. The time information may be descriptively inter-
esting on its own, or we may need to include it in our statistical models. In fact, many
longitudinal analyses will require that our data have a person-period structure. For
example, mixed models, gereralized estimating equations, and survival analysis.

2. The person-period structure can be more efficient when we the intervals between repeated
measures vary across observational units. For example, in the data above the baby weight
columns were named weight_3, weight_6, weight_9, and weight_12, which indicated
each baby’s weight at a 3-month, 6-month, 9-month, and 12-month checkup. However,
what if the study needed a more precise measure of each baby’s age. Let’s say that we
needed to record each baby’s weight at their precise age in days at each checkup. That
might look something like the following if structured in a person-level format:

540



Figure 32.7: Baby weights at age in days. Babies 1001 and 1002 only.

Notice all the missing data in this format – even with only two babies. For example, baby
1001 had her first check-up at 36 days old. She was 9 lbs. Baby 1002, however, didn’t have
her first checkup until she was 84 days old. So, baby 1002 has a missing value for weight_36.
That pattern continues throughout the data. Now, just try to imagine what this would look
like for tens, hundreds, or thousands of babies. It would be a mess! By contrast, the person-
period version of this data is much more efficient. In fact, it looks almost identical to the first
person-period version of this data:

541



Figure 32.8: Baby weights at age in days. Babies 1001 and 1002 only.

3. For essentially the same reasons already discussed above, the person-period format is
better suited for handling time-varying predictors. In the baby weight data, the only
predictor variable (other than time) was sex, which is time invariant. Regardless of
which structure we use, sex only requires one column in the data frame because it never
changes. However, imagine a scenario where we also collect height and information
about diet at each visit. Using a person-level structure to store these variables would
have the same limitations that we already discussed above (i.e., no explicit measure of
time, incompatibility with many analysis techniques, and potentially inefficient storage).

4. Many of the “tidyverse” packages we use in this book (e.g., dplyr and ggplot2) assume,
or at least work best, with data organized in a person-period, or long, format.

So, does this mean that we should never organize our data frames in a person-level format?
Of course not! There are going to be some occasions when there are advantages to organizing
our data frames in a person-level format. For example:

1. Many people prefer the person-level format during the data entry process because it can
require less typing. Thinking about our baby weight data above, we would only need to
type one new value at each checkup (i.e., weight) if the data is organized in a person-level
format. However, if the data is organized in a person-period format, we have to type
three new values (i.e., id, sex, and weight). This limitation grows with the number of
time-invariant variables in the data.

542



2. There are some analyses that will require that our data have a person-level structure.
For example, the traditional ANOVA and MANOVA techniques assume the wide format.

3. There are times when our data is easier to manipulate when it is organized in a person-
level format.

4. There are times when it’s advantageous to restructure statistical results from a longer
format to a wider format to present them in the most effective way possible.

Luckily, we rarely have to choose one structure or the other in an absolute sense. The tidyr
package generally makes it very easy for us to restructure (“reshape” is another commonly
used term) our data frames from wide to long and back again. This allows us to organize our
data in the manner that is best suited for the particular task at hand. Let’s go ahead and
take a look at some examples.

32.1 The tidyr package

The tools we will use for restructuring our data will primarily come from a package we haven’t
used before in this book – tidyr. If you haven’t already done so, and you’d like to follow
along, please install and load tidyr, dplyr, and ggplot2 now.

library(tidyr)
library(dplyr)
library(ggplot2)

32.2 Pivoting longer

In epidemiology, it’s common for data that we analyze to be measured on multiple occasions.
It’s also common for repeated measures data to be entered into a spreadsheet or database in
such a way that each new measure is a new column. We saw an example of this above:

543



Figure 32.9: Baby weights at 3, 6, 9, and 12 months

we already concluded that this data has a person-level (wide) structure. As discussed above,
many techniques that we may want to use to analyze this data will require us to restructure it
to a person-period format. Let’s go ahead and walk through a demonstration of how do that.
We will start by simulating this data in R:

babies <- tibble(
id = 1001:1008,
sex = c("F", "F", "M", "F", "M", "M", "M", "F"),
weight_3 = c(9, 11, 17, 16, 11, 17, 16, 15),
weight_6 = c(13, 16, 20, 18, 15, 21, 17, 16),
weight_9 = c(16, 17, 23, 21, 16, 25, 19, 18),
weight_12 = c(17, 20, 24, 22, 18, 26, 21, 19)

) %>%
print()

# A tibble: 8 x 6
id sex weight_3 weight_6 weight_9 weight_12

<int> <chr> <dbl> <dbl> <dbl> <dbl>
1 1001 F 9 13 16 17
2 1002 F 11 16 17 20

544



3 1003 M 17 20 23 24
4 1004 F 16 18 21 22
5 1005 M 11 15 16 18
6 1006 M 17 21 25 26
7 1007 M 16 17 19 21
8 1008 F 15 16 18 19

Now, let’s use the pivot_longer() function to restructure the babies data frame to a person-
period format:

babies_long <- babies %>%
pivot_longer(

cols = starts_with("weight"),
names_to = "months",
names_prefix = "weight_",
values_to = "weight"

) %>%
print()

# A tibble: 32 x 4
id sex months weight

<int> <chr> <chr> <dbl>
1 1001 F 3 9
2 1001 F 6 13
3 1001 F 9 16
4 1001 F 12 17
5 1002 F 3 11
6 1002 F 6 16
7 1002 F 9 17
8 1002 F 12 20
9 1003 M 3 17
10 1003 M 6 20
# i 22 more rows

�Here’s what we did above:

• we used tidyr’s pivot_longer() function to restructure the babies data frame from
person-level (wide) to person-period (long).

• You can type ?pivot_longer into your R console to view the help documentation for
this function and follow along with the explanation below.

545



• The first argument to the pivot_longer() function is the data argument. You should
pass the name of the data frame you want to restructure to the data argument. Above,
we passed the babies data frame to the data argument using a pipe operator.

• The second argument to the pivot_longer() function is the cols argument. You should
pass the name of the columns you want to make longer to the cols argument. Above, we
passed the names of the four weight columns to the cols argument. The cols argument
actually accepts tidy-select argument modifiers. We first discussed tidy-select argument
modifiers in the chapter on subsetting data frames. In the example above, we used
the starts_with() tidy-select modifier to simplify our code. Instead of passing each
column name directly to the cols argument, we asked starts_with() to pass the name
of any column that has a column name that starts with the word “weight” to the cols
argument.

• The third argument to the pivot_longer() function is the names_to argument. You
should pass the names_to argument a character string or character vector that tells
pivot_longer() what you want to name the column that will contain the previous
column names that were pivoted. By default, the value passed to the names_to ar-
gument is "name". We passed the value "months" to the names_to argument. This
tells pivot_longer() what to name the column that contains the names of the previ-
ous column names. If that seems really confusing, I’m with you. Unfortunately, we
don’t currently know a better way to write it, but we will show you what the names_to
argument does below.

• The fourth argument to the pivot_longer() function is the names_prefix argu-
ment. You should pass the names_prefix argument a regular expression that tells
pivot_longer() what to remove from the start of each of the previous column names
that we pivoted. By default, the value passed to the names_prefix argument is NULL
(i.e., it doesn’t remove anything). We passed the value "weight_" to the names_prefix
argument. This tells pivot_longer() that we want to remove the character string
“weight_” from the start of each of the previous column names that we pivoted. For
example, removing “weight_” from “weight_3” results in the value “3”, removing
“weight_” from “weight_6” results in the value “6”, and so on. Again, we will show you
what the names_prefix argument does below.

• The eighth argument (we left the 5th, 6th, and 7th arguments at their default val-
ues) to the pivot_longer() function is the values_to argument. You should pass the
values_to argument a character string or character vector that tells pivot_longer()
what you want to name the column that will contain the values from the columns that
were pivoted. By default, the value passed to the values_to argument is "value". We
passed the value "weight" to the values_to argument. This tells pivot_longer() what
to name the column that contains values from the columns that were pivoted. we will
demonstrate what the values_to argument does below as well.

546

../subsetting_data_frames/subsetting_data_frames.qmd


32.2.1 The names_to argument

The official help documentation for pivot_longer() says that the value passed to the
names_to argument should be “a string specifying the name of the column to create from the
data stored in the column names of data.” we don’t blame you if you feel like that’s a little
bit difficult to wrap your head around. Let’s take a look at the result we get when we don’t
adjust the value passed to the names_to argument:

babies %>%
pivot_longer(

cols = starts_with("weight")
)

# A tibble: 32 x 4
id sex name value

<int> <chr> <chr> <dbl>
1 1001 F weight_3 9
2 1001 F weight_6 13
3 1001 F weight_9 16
4 1001 F weight_12 17
5 1002 F weight_3 11
6 1002 F weight_6 16
7 1002 F weight_9 17
8 1002 F weight_12 20
9 1003 M weight_3 17
10 1003 M weight_6 20
# i 22 more rows

547



As you can see, when we only pass a value to the cols argument, pivot_longer() creates a
new column that contains the column names from the data frame passed to the data argument,
that are being pivoted into long format. By default, pivot_longer() names that column name.
However, that name isn’t very informative. We will go ahead and change the column name to
“months” because we know that this column will eventually contain month values. We do so
by passing the value "months" to the names_to argument like this:

babies %>%
pivot_longer(

cols = starts_with("weight"),
names_to = "months"

)

# A tibble: 32 x 4
id sex months value

<int> <chr> <chr> <dbl>
1 1001 F weight_3 9
2 1001 F weight_6 13
3 1001 F weight_9 16
4 1001 F weight_12 17
5 1002 F weight_3 11
6 1002 F weight_6 16
7 1002 F weight_9 17

548



8 1002 F weight_12 20
9 1003 M weight_3 17
10 1003 M weight_6 20
# i 22 more rows

32.2.2 The names_prefix argument

The official help documentation for pivot_longer() says that the value passed to the
names_prefix argument should be “a regular expression used to remove matching text from
the start of each variable name.” Passing a value to this argument can be really useful when
column names actually contain data values, which was the case above. Take the column
name “weight_3” for example. The “weight” part is truly a column name – it tells us what
the values in that column are. They are weights. The “3” part is actually a separate data
value meaning “3 months.” If we can remove the “weight_” part of the column name, then
what remains is a useful column of information – time measured in months. Passing the value
“weight_” to the names_prefix argument does exactly that.

babies %>%
pivot_longer(

cols = starts_with("weight"),
names_to = "months",
names_prefix = "weight_"

)

# A tibble: 32 x 4
id sex months value

<int> <chr> <chr> <dbl>
1 1001 F 3 9
2 1001 F 6 13
3 1001 F 9 16
4 1001 F 12 17
5 1002 F 3 11
6 1002 F 6 16
7 1002 F 9 17
8 1002 F 12 20
9 1003 M 3 17
10 1003 M 6 20
# i 22 more rows

Now, the value passed to the names_prefix argument can be any regular expression. So, we
could have written a more complicated, and flexible, regular expression like this:

549



babies %>%
pivot_longer(

cols = starts_with("weight"),
names_to = "months",
names_prefix = "\\w+_"

)

# A tibble: 32 x 4
id sex months value

<int> <chr> <chr> <dbl>
1 1001 F 3 9
2 1001 F 6 13
3 1001 F 9 16
4 1001 F 12 17
5 1002 F 3 11
6 1002 F 6 16
7 1002 F 9 17
8 1002 F 12 20
9 1003 M 3 17
10 1003 M 6 20
# i 22 more rows

The regular expression above would have removed any word characters followed by an under-
score. However, in this case, the value "weight_" is straightforward and gets the job done.

32.2.3 The values_to argument

The official help documentation for pivot_longer() says that the value passed to the
values_to argument should be “a string specifying the name of the column to create from
the data stored in cell values.” All that means is that we use this argument to name the
column that contains the values that were pivoted.

550



By default, pivot_longer() names that column “value.” However, we will once again want
a more informative column name in our new data frame. So, we’ll go ahead and change the
column name to “weight” because that’s what the values in that column are – weights. We do
so by passing the value "weight" to the values_to argument like this:

babies %>%
pivot_longer(

cols = starts_with("weight"),
names_to = "months",
names_prefix = "weight_",
values_to = "weight"

)

# A tibble: 32 x 4
id sex months weight

<int> <chr> <chr> <dbl>
1 1001 F 3 9
2 1001 F 6 13
3 1001 F 9 16
4 1001 F 12 17
5 1002 F 3 11
6 1002 F 6 16
7 1002 F 9 17

551



8 1002 F 12 20
9 1003 M 3 17
10 1003 M 6 20
# i 22 more rows

32.2.4 The names_transform argument

As one little final touch on the data restructuring at hand, it would be nice to coerce the
months column from type character to type integer. We already know how to do this with
mutate():

babies %>%
pivot_longer(

cols = starts_with("weight"),
names_to = "months",
names_prefix = "weight_",
values_to = "weight"

) %>%
mutate(months = as.integer(months))

# A tibble: 32 x 4
id sex months weight

<int> <chr> <int> <dbl>
1 1001 F 3 9
2 1001 F 6 13
3 1001 F 9 16
4 1001 F 12 17
5 1002 F 3 11
6 1002 F 6 16
7 1002 F 9 17
8 1002 F 12 20
9 1003 M 3 17

10 1003 M 6 20
# i 22 more rows

However, we can also do this directly inside the pivot_longer() function by passing a list of
column names paired with type coercion functions. For example:

babies %>%
pivot_longer(

cols = starts_with("weight"),

552



names_to = "months",
names_prefix = "weight_",
names_transform = list(months = as.integer),
values_to = "weight"

)

# A tibble: 32 x 4
id sex months weight

<int> <chr> <int> <dbl>
1 1001 F 3 9
2 1001 F 6 13
3 1001 F 9 16
4 1001 F 12 17
5 1002 F 3 11
6 1002 F 6 16
7 1002 F 9 17
8 1002 F 12 20
9 1003 M 3 17

10 1003 M 6 20
# i 22 more rows

�Here’s what we did above:

• we coerced the months column from type character to type integer by passing the value
list(months = as.integer) to the names_transform argument. The list passed to
names_transform should contain one or more column names paired with a type coercion
function. The column name and type coercion function should be paired using an equal
sign. Multiple pairs should be separated by commas.

32.2.5 Pivoting multiple sets of columns

Let’s add a little layer of complexity to our situation. Let’s say that our babies data frame
also includes each baby’s length in inches measured at each visit:

set.seed(123)
babies <- tibble(
id = 1001:1008,
sex = c("F", "F", "M", "F", "M", "M", "M", "F"),
weight_3 = c(9, 11, 17, 16, 11, 17, 16, 15),
weight_6 = c(13, 16, 20, 18, 15, 21, 17, 16),
weight_9 = c(16, 17, 23, 21, 16, 25, 19, 18),

553



weight_12 = c(17, 20, 24, 22, 18, 26, 21, 19),
length_3 = c(17, 19, 23, 20, 18, 22, 21, 18),
length_6 = round(length_3 + rnorm(8, 2, 1)),
length_9 = round(length_6 + rnorm(8, 2, 1)),
length_12 = round(length_9 + rnorm(8, 2, 1)),

) %>%
print()

# A tibble: 8 x 10
id sex weight_3 weight_6 weight_9 weight_12 length_3 length_6 length_9

<int> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 1001 F 9 13 16 17 17 18 19
2 1002 F 11 16 17 20 19 21 23
3 1003 M 17 20 23 24 23 27 30
4 1004 F 16 18 21 22 20 22 24
5 1005 M 11 15 16 18 18 20 22
6 1006 M 17 21 25 26 22 26 28
7 1007 M 16 17 19 21 21 23 24
8 1008 F 15 16 18 19 18 19 23
# i 1 more variable: length_12 <dbl>

Here is what we want our final data frame to look like:

babies %>%
pivot_longer(

cols = c(-id, -sex),
names_to = c(".value", "months"),
names_sep = "_"

)

# A tibble: 32 x 5
id sex months weight length

<int> <chr> <chr> <dbl> <dbl>
1 1001 F 3 9 17
2 1001 F 6 13 18
3 1001 F 9 16 19
4 1001 F 12 17 21
5 1002 F 3 11 19
6 1002 F 6 16 21
7 1002 F 9 17 23
8 1002 F 12 20 23

554



9 1003 M 3 17 23
10 1003 M 6 20 27
# i 22 more rows

Next, we’ll walk through getting to this result step-by-step.

we are once again starting with a person-level data frame, and we once again want to restructure
it to a person-period data frame. This is the result we get if we use the same code we previously
used to restructure the data frame that didn’t include each baby’s length:

babies_long <- babies %>%
pivot_longer(

cols = starts_with("weight"),
names_to = "months",
names_prefix = "weight_",
values_to = "weight"

) %>%
print()

# A tibble: 32 x 8
id sex length_3 length_6 length_9 length_12 months weight

<int> <chr> <dbl> <dbl> <dbl> <dbl> <chr> <dbl>
1 1001 F 17 18 19 21 3 9
2 1001 F 17 18 19 21 6 13
3 1001 F 17 18 19 21 9 16
4 1001 F 17 18 19 21 12 17
5 1002 F 19 21 23 23 3 11
6 1002 F 19 21 23 23 6 16
7 1002 F 19 21 23 23 9 17
8 1002 F 19 21 23 23 12 20
9 1003 M 23 27 30 33 3 17

10 1003 M 23 27 30 33 6 20
# i 22 more rows

Because we aren’t passing any of the length_ columns to the cols argument, pivot_longer()
is treating them like the other time-invariant variables (i.e., id and sex). Their values are just
being recycled across every row within each id. So, let’s add the length_ columns to the cols
argument and see what happens:

babies_long <- babies %>%
pivot_longer(

cols = c(-id, -sex),

555



names_to = "months",
names_prefix = "weight_",
values_to = "weight"

) %>%
print()

# A tibble: 64 x 4
id sex months weight

<int> <chr> <chr> <dbl>
1 1001 F 3 9
2 1001 F 6 13
3 1001 F 9 16
4 1001 F 12 17
5 1001 F length_3 17
6 1001 F length_6 18
7 1001 F length_9 19
8 1001 F length_12 21
9 1002 F 3 11
10 1002 F 6 16
# i 54 more rows

�Here’s what we did above:

• we passed the weight_ and length_ columns to the cols argument indirectly by passing
the value c(-id, -sex). Basically, this tells pivot_longer() that we would like to
pivot every column except id and sex.

Now, we are pivoting both the weight_ columns and the length_ columns. That’s an im-
provement. However, we obviously still don’t have the result we want.

Remember that the value passed to the names_prefix argument is used to remove matching
text from the start of each variable name. Passing the value "weight_" to the names_prefix
argument made sense when all of our pivoted columns began with the character sting “weight_”.
Now, however, some of our pivoted columns begin with the character string “length_”. That’s
why we are still seeing values in the months column like length_3, length_6, and so on.

Now, your first instinct might be to just add "length_" to the names_prefix argument.
Unfortunately, that doesn’t work:

babies_long <- babies %>%
pivot_longer(

cols = c(-id, -sex),
names_to = "months",

556



names_prefix = c("weight_", "length_"),
values_to = "weight"

) %>%
print()

Warning in gsub(vec_paste0("^", names_prefix), "", cols): argument 'pattern'
has length > 1 and only the first element will be used

# A tibble: 64 x 4
id sex months weight

<int> <chr> <chr> <dbl>
1 1001 F 3 9
2 1001 F 6 13
3 1001 F 9 16
4 1001 F 12 17
5 1001 F length_3 17
6 1001 F length_6 18
7 1001 F length_9 19
8 1001 F length_12 21
9 1002 F 3 11
10 1002 F 6 16
# i 54 more rows

Instead, we need to drop the names_prefix argument altogether before we can move forward
to the correct solution:

babies_long <- babies %>%
pivot_longer(

cols = c(-id, -sex),
names_to = "months",
values_to = "weight"

) %>%
print()

# A tibble: 64 x 4
id sex months weight

<int> <chr> <chr> <dbl>
1 1001 F weight_3 9
2 1001 F weight_6 13
3 1001 F weight_9 16

557



4 1001 F weight_12 17
5 1001 F length_3 17
6 1001 F length_6 18
7 1001 F length_9 19
8 1001 F length_12 21
9 1002 F weight_3 11
10 1002 F weight_6 16
# i 54 more rows

Additionally, not all the values in the third column (i.e., weight) are weights. Half of those
values are lengths. So, we also need to drop the values_to argument:

babies_long <- babies %>%
pivot_longer(

cols = c(-id, -sex),
names_to = "months"

) %>%
print()

# A tibble: 64 x 4
id sex months value

<int> <chr> <chr> <dbl>
1 1001 F weight_3 9
2 1001 F weight_6 13
3 1001 F weight_9 16
4 1001 F weight_12 17
5 1001 F length_3 17
6 1001 F length_6 18
7 1001 F length_9 19
8 1001 F length_12 21
9 1002 F weight_3 11
10 1002 F weight_6 16
# i 54 more rows

Believe it or not, we are actually pretty close to accomplishing our goal. Next, we need to
somehow tell pivot_longer() that the column names we are pivoting contain a description
of the values (i.e., heights and weights) and time values (i.e., 3, 6, 9, and 12 months). Notice
that in all cases, the description and the time value are separated by an underscore. It turns
out that we can use the names_sep argument to give pivot_longer() this information.

558



32.2.6 The names_sep argument

Let’s start by simply passing the adding the names_sep argument to the pivot_longer()
function and pass it the value that separates our description and our time value:

babies_long <- babies %>%
pivot_longer(

cols = c(-id, -sex),
names_to = "months",
names_sep = "_"

) %>%
print()

Error in `pivot_longer()`:
! `names_sep` can't be used with a length 1 `names_to`.

And we get an error. The reason we get an error can be seen in the following figure:

we are asking pivot_longer() to break up each column name (e.g., weight_3) at the under-
score. That results in creating two separate character strings. In this case, the character string
“weight” and the character string “3”. However, we only passed one value to the names_to
argument – "months". So, which character string should pivot_longer() put in the months
column? Of course, we know that the answer is “3”, but pivot_longer() doesn’t know that.

559



So, we have to pass two values to the names_to argument. But, what values should we pass?

we obviously want to character string that comes after the underscore to be called “months”.
However, we can’t call the character string in front of the underscore “weight” because this
column isn’t just identifying rows that contain weights. Similarly, we can’t call the character
string in front of the underscore “length” because this column isn’t just identifying rows that
contain lengths. For lack of a better idea, let’s just call it “measure”.

babies_long <- babies %>%
pivot_longer(

cols = c(-id, -sex),
names_to = c("measure", "months"),
names_sep = "_"

) %>%
print()

# A tibble: 64 x 5
id sex measure months value

<int> <chr> <chr> <chr> <dbl>
1 1001 F weight 3 9
2 1001 F weight 6 13
3 1001 F weight 9 16
4 1001 F weight 12 17

560



5 1001 F length 3 17
6 1001 F length 6 18
7 1001 F length 9 19
8 1001 F length 12 21
9 1002 F weight 3 11
10 1002 F weight 6 16
# i 54 more rows

That sort of works. Except, what we really want is one row for each combination of id and
months, each containing a value for weight and length. Instead, we have two rows for each
combination of id and months. One set of rows contains weights and the other set of rows
contains lengths.

What we really need is for pivot_longer() to make weight one column and length a separate
column, and then put the appropriate values from value under each. We can do this with the
.value special value.

32.2.7 The .value special value

The official help documentation for pivot_longer() says that the .value special value “in-
dicates that [the] component of the name defines the name of the column containing the cell
values, overriding values_to.” Said another way, .value tells pivot_longer() the character
string in front of the underscore is the value description. Further, .value tells pivot_longer()
to create a new column for each unique character string that is in front of the underscore.

561



Now, let’s add the .value special value to our code:

babies_long <- babies %>%
pivot_longer(

cols = c(-id, -sex),
names_to = c(".value", "months"),
names_sep = "_",
names_transform = list(months = as.integer)

) %>%
print()

# A tibble: 32 x 5
id sex months weight length

<int> <chr> <int> <dbl> <dbl>
1 1001 F 3 9 17
2 1001 F 6 13 18
3 1001 F 9 16 19
4 1001 F 12 17 21
5 1002 F 3 11 19
6 1002 F 6 16 21
7 1002 F 9 17 23
8 1002 F 12 20 23
9 1003 M 3 17 23

562



10 1003 M 6 20 27
# i 22 more rows

And that is exactly the result we wanted. However, there was one little detail we didn’t cover.
How does .value know to create a new column for each unique character string that is in
front of the underscore. Why didn’t it create a new column for each unique character string
that is behind the underscore?

The answer is simple. It knows because of the ordering we used in the value we passed to the
names_to argument. If we changed the order to c("months", ".value"), pivot_longer()
would have created a new column for each unique character string that is behind the underscore.
Take a look:

babies %>%
pivot_longer(

cols = c(-id, -sex),
names_to = c("months", ".value"),
names_sep = "_"

)

# A tibble: 16 x 7
id sex months `3` `6` `9` `12`

<int> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
1 1001 F weight 9 13 16 17
2 1001 F length 17 18 19 21
3 1002 F weight 11 16 17 20
4 1002 F length 19 21 23 23
5 1003 M weight 17 20 23 24
6 1003 M length 23 27 30 33
7 1004 F weight 16 18 21 22
8 1004 F length 20 22 24 26
9 1005 M weight 11 15 16 18
10 1005 M length 18 20 22 23
11 1006 M weight 17 21 25 26
12 1006 M length 22 26 28 30
13 1007 M weight 16 17 19 21
14 1007 M length 21 23 24 25
15 1008 F weight 15 16 18 19
16 1008 F length 18 19 23 24

So, be careful about the ordering of the values you pass to the names_to argument.

563



32.2.8 Why person-period?

Why might we want the babies data in this person-period format? Well, as we discussed above,
there are many analytic techniques that require our data to be in this format. Unfortunately,
those techniques are beyond the scope of this chapter. However, this person-period format is
still necessary for something as simple as plotting baby weight against baby height as we’ve
done in the scatter plot below:

babies_long %>%
mutate(months = factor(months, c(3, 6, 9, 12))) %>%
ggplot() +

geom_point(aes(weight, length, color = months)) +
labs(
x = "Weight (Pounds)",
y = "Length (Inches)",
color = "Age (Months)"

) +
theme_classic()

20

25

30

10 15 20 25
Weight (Pounds)

Le
ng

th
 (

In
ch

es
) Age (Months)

3

6

9

12

564



32.3 Pivoting wider

As previously discussed, the person-period, or long, data structure is usually preferable for
longitudinal data analysis. However, there are times when the person-level data structure is
preferable, or even necessary. Further, there are times when we have tables of analysis results,
as opposed than actual data values, that we need to restructure for ease of interpretation. We
will demonstrate how to do both below.

We’ll start by learning how to restructure, or reshape, our person-period babies_long data
frame back to a person-level format. As a reminder, here is what our babies_long data frame
currently looks like:

babies_long

# A tibble: 32 x 5
id sex months weight length

<int> <chr> <int> <dbl> <dbl>
1 1001 F 3 9 17
2 1001 F 6 13 18
3 1001 F 9 16 19
4 1001 F 12 17 21
5 1002 F 3 11 19
6 1002 F 6 16 21
7 1002 F 9 17 23
8 1002 F 12 20 23
9 1003 M 3 17 23

10 1003 M 6 20 27
# i 22 more rows

As you probably guessed, we will use tidyr’s pivot_wider() function to restructure the
data:

babies <- babies_long %>%
pivot_wider(

names_from = "months",
values_from = c("weight", "length")

) %>%
print()

# A tibble: 8 x 10
id sex weight_3 weight_6 weight_9 weight_12 length_3 length_6 length_9

565



<int> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 1001 F 9 13 16 17 17 18 19
2 1002 F 11 16 17 20 19 21 23
3 1003 M 17 20 23 24 23 27 30
4 1004 F 16 18 21 22 20 22 24
5 1005 M 11 15 16 18 18 20 22
6 1006 M 17 21 25 26 22 26 28
7 1007 M 16 17 19 21 21 23 24
8 1008 F 15 16 18 19 18 19 23
# i 1 more variable: length_12 <dbl>

�Here’s what we did above:

• We used tidyr’s pivot_wider() function to restructure the babies_long data frame
from person-period (long) to person-level (wide).

• You can type ?pivot_wider into your R console to view the help documentation for this
function and follow along with the explanation below.

• The first argument to the pivot_wider() function is the data argument. You should
pass the name of the data frame you want to restructure to the data argument. Above,
we passed the babies_long data frame to the data argument using a pipe operator.

• The third argument (we left the second argument at its default value) to the
pivot_wider() function is the names_from argument. You should pass this argument
the name of a column, or columns, that exists in the data frame you passed to the data
argument. The column(s) you choose should contain values that you want to become
column names in the wide data frame. That’s a little be confusing, and our example
above is sort of subtle, so here is a more obvious example:

df <- tribble(
~id, ~measure, ~lbs_inches,
1, "weight", 9,
1, "length", 17,
2, "weight", 11,
2, "length", 19

) %>%
print()

# A tibble: 4 x 3
id measure lbs_inches

<dbl> <chr> <dbl>
1 1 weight 9

566



2 1 length 17
3 2 weight 11
4 2 length 19

• In the data frame above, the values in the column named measure are what we want to
use as column names in our wide data frame. Therefore, we would pass "measure" to
the names_to argument of pivot_wider():

df %>% pivot_wider(
names_from = "measure",
values_from = "lbs_inches"

)

# A tibble: 2 x 3
id weight length

<dbl> <dbl> <dbl>
1 1 9 17
2 2 11 19

• Our babies example was more subtle in the sense that the long version of our data
frame already had columns named weight and height. However, we essentially wanted
to change those column names by adding the values from the column named months
to the current column names. So, weight to weight_3, with the “3” coming from the
column months.

• The ninth argument (we left the fourth through eighth arguments at their default value)
to the pivot_wider() function is the values_from argument. You should pass this
argument the name of a column, or columns, that exists in the data frame you passed
to the data argument. The column(s) you choose should contain values for the new
columns you want to create in the new wide data frame. In our babies data frame, we
wanted to pull the values from the weight and length columns respectively.

• The combination of arguments (i.e., names_from = "months" and values_from =
c("weight", "length")) that we passed to pivot_wider() above essentially said,
“make new columns from each combination of the values in the column named months
and the column names weight and length. So, weight_3, weight_6, etc. Then, the
values you put in each column should come from the intersection of month and weight
(for the weight_#) columns, or month and length (for the length_#) columns.

32.3.1 Why person-level?

Why might we want the babies data in this person-level format? Well, as we discussed
above, there are a handful analytic techniques that require our data to be in this format.

567



Unfortunately, those techniques are beyond the scope of this chapter. However, this person-
level format is still useful for something as simple as calculating descriptive statistics about
time-invariant variables. For example, the number of female and male babies in our data
frame:

babies %>%
count(sex)

# A tibble: 2 x 2
sex n
<chr> <int>

1 F 4
2 M 4

32.4 Pivoting summary statistics

What do I mean by pivoting “summary statistics?” Well, in all the examples above we were
manipulating the actual data values that were gathered about our observational units – babies.
However, the ultimate goal of doing this kind of data management is typically to analyze it. In
other words, we can often learn more from collapsing our data into a relatively small number
of summary statistics than we can by viewing the actual data values themselves. Having said
that, not all ways of organizing our summary statistics are equally informative. Or, perhaps
it’s more accurate to say that not all ways of organizing our summary statistics convey the
information with equal efficiency.

There are probably a near-infinite number of possible examples of manipulating summary
statistics that we could discuss. Obviously, I can’t cover them all. However, I will walk
through two examples below that are intended to give you a feel for what we are talking
about.

32.4.1 Pivoting summary statistics wide to long

Our first example is a pretty simple one. Let’s say that we are working with our person-level
babies data frame. In this scenario, we want to calculate the mean and standard deviation of
weight at the 3, 6, 9, and 12-month follow-up visits. We might do the calculations like this:

mean_weights <- babies %>%
summarise(

mean(weight_3),
sd(weight_3),

568



mean(weight_6),
sd(weight_6),
mean(weight_9),
sd(weight_9),
mean(weight_12),
sd(weight_12),

) %>%
print()

# A tibble: 1 x 8
`mean(weight_3)` `sd(weight_3)` `mean(weight_6)` `sd(weight_6)`

<dbl> <dbl> <dbl> <dbl>
1 14 3.16 17 2.62
# i 4 more variables: `mean(weight_9)` <dbl>, `sd(weight_9)` <dbl>,
# `mean(weight_12)` <dbl>, `sd(weight_12)` <dbl>

�Side Note: This is not the most efficient way to do this analysis. We are only doing the
analysis in this way to give us an excuse to use pivot_longer() to restructure some summary
statistics.

By default, the mean and standard deviation are organized in a single row, side-by-side. One
issue with organizing our results this way is that is that they don’t all fit on the screen at the
same time. However, even if they did, it’s much more difficult for our brains to quickly scan
the numbers and make comparisons across months when the summary statistics are organized
this way than when they are stacked on top of each other. Take a look for yourself below:

mean_weights %>%
pivot_longer(

cols = everything(),
names_to = c(".value", "measure", "months"),
names_pattern = "(\\w+)\\((\\w+)_(\\d+)"

)

# A tibble: 4 x 4
measure months mean sd
<chr> <chr> <dbl> <dbl>

1 weight 3 14 3.16
2 weight 6 17 2.62
3 weight 9 19.4 3.34
4 weight 12 20.9 3.04

569



�Here’s what we did above:

• We used tidyr’s pivot_longer() function to restructure our data frame of summary
statistics from wide to long.

• The only new argument above is the names_pattern argument. You should pass a
regular expression to the names_pattern argument. This regular expression will tell
pivot_longer() how to break up the original column names and repurpose them for
the new column names. The regular expression we used above is not intended to be the
main lesson here. But, I’m sure that some of you will be curious about how it works,
so I will try to briefly explain it below. In a way, this is how R interprets the regular
expression above (feel free to skip if you aren’t interested):

stringr::str_match("mean(weight_3)", "(\\w+)\\((\\w+)_(\\d+)")

[,1] [,2] [,3] [,4]
[1,] "mean(weight_3" "mean" "weight" "3"

• We haven’t used parentheses yet in our regular expressions, but they create something
called “capturing groups.” Instead of saying, “look for this one thing in the character
string,” we say “look for these groups of things in this character string.”

• The first capture group in the regular expression is (\\w+). This tells R to look for one
or more word characters. The value that R grabs as part of this first capture group is
given under the second result (i.e., [,2]) above – "mean".

• Then, the regular expression tells R to look for a literal open parenthesis \\(. However,
this parenthesis is not included in a capture group. In this case, it’s really just used as
landmark to tell R where the first capture group stops, and the second capture group
starts.

• The second capture group in the regular expression is another (\\w+). This again tells
R to look for one or more word characters, but this time, R starts look for the word
characters after the open parenthesis. The value that R grabs as part of the second
capture group is given under the third result (i.e., [,3]) above – "weight".

• Next, the regular expression tells R to look for a literal underscore _. However, this
underscore is not included in a capture group. In this case, it’s really just used as
landmark to tell R where the second capture group stops, and the third capture group
starts.

• The third and final capture group in the regular expression is (\\d+). This tells R to
look for one or more digits after the underscore. The value that R grabs as part of the
third capture group is given under the third result (i.e., [,4]) above – "3".

570



• Finally, R matches the values it grabs in each of the three capture groups with the three
values passed to the names_to argument, which are ".value", "measure", and "months".
We already discussed the .value special value above. Similar to before, .value will create
a new column for each unique value captured in the first capture group. In this case,
mean and sd. Next, the values captured in the second capture group are assigned to
a column named measure. Finally, the values captured in the third capture group are
assigned to a column named months.

32.4.2 Pivoting summary statistics long to wide

This next example comes from an actual project I was involved with. As a part of this project,
researchers asked the parents of elementary-aged children about series of sun protection be-
haviors. Below, I’m not simulating the data that was collected. Rather, I am simulating a
small part of the results of one of the early descriptive analyses we conducted:

summary_stats <- tribble(
~period, ~behavior, ~value, ~n, ~n_total, ~percent,
"School Year Weekends", "Long sleeve shirt", "Never", 6, 78, 8,
"School Year Weekends", "Long sleeve shirt", "Seldom", 16, 78, 21,
"School Year Weekends", "Long sleeve shirt", "Sometimes", 33, 78, 42,
"School Year Weekends", "Long sleeve shirt", "Often", 17, 78, 22,
"School Year Weekends", "Long sleeve shirt", "Always", 6, 78, 8,
"School Year Weekends", "Long Pants", "Never", 5, 79, 6,
"School Year Weekends", "Long Pants", "Seldom", 15, 79, 19,
"School Year Weekends", "Long Pants", "Sometimes", 32, 79, 41,
"School Year Weekends", "Long Pants", "Often", 19, 79, 24,
"School Year Weekends", "Long Pants", "Always", 8, 79, 10,
"Summer", "Long sleeve shirt", "Never", 9, 80, 11,
"Summer", "Long sleeve shirt", "Seldom", 18, 80, 22,
"Summer", "Long sleeve shirt", "Sometimes", 31, 80, 39,
"Summer", "Long sleeve shirt", "Often", 14, 80, 18,
"Summer", "Long sleeve shirt", "Always", 8, 80, 10,
"Summer", "Long Pants", "Never", 7, 76, 9,
"Summer", "Long Pants", "Seldom", 16, 76, 21,
"Summer", "Long Pants", "Sometimes", 27, 76, 36,
"Summer", "Long Pants", "Often", 18, 76, 24,
"Summer", "Long Pants", "Always", 8, 76, 11

) %>%
print()

# A tibble: 20 x 6

571



period behavior value n n_total percent
<chr> <chr> <chr> <dbl> <dbl> <dbl>

1 School Year Weekends Long sleeve shirt Never 6 78 8
2 School Year Weekends Long sleeve shirt Seldom 16 78 21
3 School Year Weekends Long sleeve shirt Sometimes 33 78 42
4 School Year Weekends Long sleeve shirt Often 17 78 22
5 School Year Weekends Long sleeve shirt Always 6 78 8
6 School Year Weekends Long Pants Never 5 79 6
7 School Year Weekends Long Pants Seldom 15 79 19
8 School Year Weekends Long Pants Sometimes 32 79 41
9 School Year Weekends Long Pants Often 19 79 24
10 School Year Weekends Long Pants Always 8 79 10
11 Summer Long sleeve shirt Never 9 80 11
12 Summer Long sleeve shirt Seldom 18 80 22
13 Summer Long sleeve shirt Sometimes 31 80 39
14 Summer Long sleeve shirt Often 14 80 18
15 Summer Long sleeve shirt Always 8 80 10
16 Summer Long Pants Never 7 76 9
17 Summer Long Pants Seldom 16 76 21
18 Summer Long Pants Sometimes 27 76 36
19 Summer Long Pants Often 18 76 24
20 Summer Long Pants Always 8 76 11

• The period column contains the time frame the researchers were asking the parents
about. It can take the values School Year Weekends or Summer.

• The behavior column contains each of the specific behaviors that the researchers were
interested in. Above, behavior takes only the values Long sleeve shirt and Long
Pants.

• The value column contains the possible answer choices that parents could select from.

• The n column contains the number of parents who selected the response in value for the
behavior in behavior and the time frame in period. For example, n = 6 in the first row
indicates that six parents said that their child never wears long sleeve shirts on weekends
during the school year.

• The n_total column is the sum of n for each period/behavior combination.

• The percent column contains the percentage of parents who selected the response in
value for the behavior in behavior and the time frame in period. For example, percent
= 8 in the first row indicates that 8 percent of parents said that their child never wears
long sleeve shirts on weekends during the school year.

These results are relatively difficult to scan and get a feel for. In particular, these researchers
were interested in whether or not engagement in these protective behaviors differed by period.

572



In other words, were kids more likely to wear long sleeve shirts on weekends during the school
year than they were during the summer? It’s difficult to answer that quickly with the way the
summary statistics above are organized. We can improve the interpretability of our results by
combining n and percent into a single character string, and pivoting them wider so that the
two periods are presented side-by-side:

summary_stats %>%
# Combine n and percent into a single character string
mutate(n_percent = paste0(n, " (", percent, ")")) %>%
# We no longer need n, n_total, percent
select(-n:-percent) %>%
pivot_wider(

names_from = "period",
values_from = "n_percent"

)

# A tibble: 10 x 4
behavior value `School Year Weekends` Summer
<chr> <chr> <chr> <chr>

1 Long sleeve shirt Never 6 (8) 9 (11)
2 Long sleeve shirt Seldom 16 (21) 18 (22)
3 Long sleeve shirt Sometimes 33 (42) 31 (39)
4 Long sleeve shirt Often 17 (22) 14 (18)
5 Long sleeve shirt Always 6 (8) 8 (10)
6 Long Pants Never 5 (6) 7 (9)
7 Long Pants Seldom 15 (19) 16 (21)
8 Long Pants Sometimes 32 (41) 27 (36)
9 Long Pants Often 19 (24) 18 (24)

10 Long Pants Always 8 (10) 8 (11)

The layout of our summary statistics above is now much more compact. Further, it’s much
easier to compare behaviors between the two time periods. For example, we can see that a
slightly higher percentage of people (11%) reported that their child never wears a long sleeve
shirt during the summer as compared to weekends during the school year (8%).

32.5 Tidy data

As I said above, the person-level (wide) and person-period (long) data structures are the
traditional way of classifying how longitudinal (or repeated measures) data are organized. In
reality, however, structuring data in a way that is most conducive to analysis is often more

573



complicated than the examples above would lead you to believe. Simply thinking about data
structure in terms of wide and long sometimes leaves us with an incomplete model for how to
take many real-world data sets and prepare them for conducting analysis in an efficient way.
In his seminal paper on the topic, Hadley Wickham, provides us with a set of guidelines for
systematically (re)structuring our data in a way that is consistent, and generally optimized
for analysis. He refers to this process as “tidying” our data, and to the resulting data frame
as “tidy data”.8

Note

If you are interested, you can download the entire article for free from the Journal of
statistical Software here.

The three basic guidelines for tidy data are:

1. Each variable (i.e., measurement or characteristic about the observational unit) must
have its own column.

2. Each observation (i.e. the people, places, or things we are interested in characterizing or
comparing at a particular occasion) must have its own row.

3. Each value must have its own cell.

According to the tidy data philosophy, any data frame that does not conform to the guidelines
above is considered “messy” data. In my opinion, it’s kind of hard to read the guidelines above
and wrap your head around what tidy data is. I think it’s actually easier to get a feel for tidy
data by looking at examples of data that are not tidy. Let’s go ahead and take a look at a few
examples:

32.5.1 Each variable must have its own column

What does it mean for every variable to have its own column? Well, let’s say we interested the
rate of neural tube defects by state. So, we pull some data from a government website that
looks like this:

births_ntd <- tibble(
state = rep(c("CA", "FL", "TX"), each = 2),
outcome = rep(c("births", "neural tube defects"), 3),
count = c(454920, 318, 221542, 155, 378624, 265)

) %>%
print()

574

https://www.jstatsoft.org/article/view/v059i10
https://www.jstatsoft.org/article/view/v059i10


# A tibble: 6 x 3
state outcome count
<chr> <chr> <dbl>

1 CA births 454920
2 CA neural tube defects 318
3 FL births 221542
4 FL neural tube defects 155
5 TX births 378624
6 TX neural tube defects 265

In this case, there is only one count column, but that column really contains two variables:
the count of live births and the count of neural tube defects. Further, the outcome column
doesn’t really contain “data.” In this case, the values stored in the outcome column are really
data labels. We can tidy this data using the pivot_wider() function:

births_ntd %>%
pivot_wider(

names_from = "outcome",
values_from = "count"

)

# A tibble: 3 x 3
state births `neural tube defects`
<chr> <dbl> <dbl>

1 CA 454920 318
2 FL 221542 155
3 TX 378624 265

Now, births and neural tube defects each have their own column. It might also be a good
idea to remove the spaces from neural tube defects and make it clear that the values in
each column are counts. But, I’m going to leave that to you.

Another common violation of the “each variable must have its own column” guideline is when
column names contain data values. We already saw an example of this above. Our weight_
and length_ column names actually had time data embedded in them.

In the example below, each column name contains two data values (i.e., sex and year); however,
neither variable currently has a column in the data:

births_sex <- tibble(
state = c("CA", "FL", "TX"),
f_2018 = c(222911, 108556, 185526),

575



m_2018 = c(232009, 112986, 193098)
) %>%
print()

# A tibble: 3 x 3
state f_2018 m_2018
<chr> <dbl> <dbl>

1 CA 222911 232009
2 FL 108556 112986
3 TX 185526 193098

In this case, we can tidy the data by giving sex and year a column, and giving the other data
values (i.e., count of live births) a more informative column name. We can do so with the
pivot_longer() function:

births_sex %>%
pivot_longer(

cols = -state,
names_to = c("sex", "year"),
names_sep = "_",
values_to = "births"

)

# A tibble: 6 x 4
state sex year births
<chr> <chr> <chr> <dbl>

1 CA f 2018 222911
2 CA m 2018 232009
3 FL f 2018 108556
4 FL m 2018 112986
5 TX f 2018 185526
6 TX m 2018 193098

32.5.2 Each observation must have its own row

Our person-level babies data frame above also violated this guideline.

babies

576



# A tibble: 8 x 10
id sex weight_3 weight_6 weight_9 weight_12 length_3 length_6 length_9

<int> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 1001 F 9 13 16 17 17 18 19
2 1002 F 11 16 17 20 19 21 23
3 1003 M 17 20 23 24 23 27 30
4 1004 F 16 18 21 22 20 22 24
5 1005 M 11 15 16 18 18 20 22
6 1006 M 17 21 25 26 22 26 28
7 1007 M 16 17 19 21 21 23 24
8 1008 F 15 16 18 19 18 19 23
# i 1 more variable: length_12 <dbl>

Notice that each baby in this data has one row, but that each row actually contains four
unique observations – at 3, 6, 9, and 12 months. As another example, let’s say that we’ve once
again downloaded birth count data from a government website. This time, we are interested in
investigating the absolute change in live births over the decade between 2010 and 2020. That
data may look like this:

births_decade <- tibble(
state = c("CA", "FL", "TX"),
`2010` = c(409428, 199388, 340762),
`2020` = c(454920, 221542, 378624)

) %>%
print()

# A tibble: 3 x 3
state `2010` `2020`
<chr> <dbl> <dbl>

1 CA 409428 454920
2 FL 199388 221542
3 TX 340762 378624

In this example, each state has a single row, but multiple observations. We can once again
tidy this data using the pivot_longer() function:

births_decade %>%
pivot_longer(

cols = -state,
names_to = "year",
values_to = "births"

)

577



# A tibble: 6 x 3
state year births
<chr> <chr> <dbl>

1 CA 2010 409428
2 CA 2020 454920
3 FL 2010 199388
4 FL 2020 221542
5 TX 2010 340762
6 TX 2020 378624

32.5.3 Each value must have its own cell

In my personal experience, violations of this guideline are rarer than violations of the first
two guidelines. However, let’s imagine a study where we are monitoring the sleeping habits
of newborn babies. Specifically, we are interested in the range of lengths of time they sleep.
That data could be recorded the following way:

baby_sleep <- tibble(
id = c(1001, 1002, 1003),
sleep_range = c(".5-2", ".75-2.4", "1.1-3.8")

) %>%
print()

# A tibble: 3 x 2
id sleep_range

<dbl> <chr>
1 1001 .5-2
2 1002 .75-2.4
3 1003 1.1-3.8

In this case, we will use a new function to tidy our data. We will use tidyr’s separate()
function to spread these values out across two columns:

baby_sleep %>%
separate(

col = sleep_range,
into = c("min_hours", "max_hours"),
sep = "-",
convert = TRUE

)

578



# A tibble: 3 x 3
id min_hours max_hours

<dbl> <dbl> <dbl>
1 1001 0.5 2
2 1002 0.75 2.4
3 1003 1.1 3.8

�Here’s what we did above:

• We used tidyr’s separate() function to tidy the baby_sleep data frame.

• You can type ?separate into your R console to view the help documentation for this
function and follow along with the explanation below.

• The first argument to the separate() function is the data argument. You should pass
the name of the data frame you want to restructure to the data argument. Above, we
passed the baby_sleep data frame to the data argument using a pipe operator.

• The second argument to the separate() function is the col argument. You should pass
the name of the column contain the data values that you want to split up to the col
argument.

• The third argument to the separate() function is the into argument. You should pass
the into argument a character vector of column names you want to give the new columns
that will be created when you break apart the values in the col column.

• The fourth argument to the separate() function is the sep argument. You should pass
the sep argument a character string that tells separate() what character separates the
individual values in the col column.

• Finally, we passed the value TRUE to the convert argument. In doing so, we asked
separate() to coerce the values in min_hours and max_hours from character type to
numeric type.

32.6 The complete() function

The final function we’re going to discuss in this chapter is tidyr’s complete() function. After
we pivot data, we will sometimes notice “holes” in the data. This typically happens to me in
the context of time data. When this happens, we can use the complete() function to fill-in
the holes in our data.

This next example didn’t actually involve pivoting, but it did come from another actual project
that I was involved with, and nicely demonstrates the importance of filling-in holes in the data.
As a part of this project, researchers were interested in increasing the number of reports of elder
mistreatment that were being made to Adult Protective Services (APS) by emergency medical

579



technicians (EMTs) and paramedics. Each row in the raw data the researchers received from
the emergency medical services provider represented a report to APS. Let’s say that the data
from the week of October 28th, 2019 to November 3rd, 2019 looked something like this:

reports <- tibble(
date = as.Date(c(

"2019-10-29", "2019-10-29", "2019-10-30", "2019-11-02", "2019-11-02"
)),
emp_id = c(5123, 2224, 5153, 9876, 4030),
report_id = c("a8934", "af2as", "jzia3", "3293n", "dsf98")

) %>%
print()

# A tibble: 5 x 3
date emp_id report_id
<date> <dbl> <chr>

1 2019-10-29 5123 a8934
2 2019-10-29 2224 af2as
3 2019-10-30 5153 jzia3
4 2019-11-02 9876 3293n
5 2019-11-02 4030 dsf98

Where:

• date is the date the report was made to APS.

• emp_id is a unique identifier for each EMT or paramedic.

• report_id is the unique identifier APS assigns to the incoming report.

Let’s say that the researchers were interested in calculating the average number of reports per
day. We would first need to count the number of reports made each day:

reports %>%
count(date)

# A tibble: 3 x 2
date n
<date> <int>

1 2019-10-29 2
2 2019-10-30 1
3 2019-11-02 2

580



Next, we might naively go ahead and calculate the mean of n like this:

reports %>%
count(date) %>%
summarise(mean_reports_per_day = mean(n))

# A tibble: 1 x 1
mean_reports_per_day

<dbl>
1 1.67

And conclude that the mean number of reports made per day was 1.67. However, there is a
problem with this strategy. Our study period wasn’t three days long. It was seven days long
(i.e., October 28th, 2019 to November 3rd, 2019). Because there weren’t any reports made
on 2019-10-28, 2019-10-31, 2019-11-01, or 2019-11-03 they don’t exist in our count data. But,
their absence doesn’t represent a missing or unknown value. Their absence represents zero
reports being made on that day. We need to explicitly encode that information in our count
data if we want to accurately calculate the mean number of reports per day. In this tiny little
simulated data frame, it’s trivial to do this calculation manually. However, the real data set
was collected over a three-year period. That’s over 1,000 days that would have to be manually
accounted for.

Luckily, we can use tidyr’s complete() function, along with the seq.Date() function we
learned in the chapter on working with date variables, to fill-in the holes in our count data in
an automated way:

reports %>%
count(date) %>%
complete(

date = seq.Date(
from = as.Date("2019-10-28"),
to = as.Date("2019-11-03"),
by = "days"

)
)

# A tibble: 7 x 2
date n
<date> <int>

1 2019-10-28 NA
2 2019-10-29 2
3 2019-10-30 1

581



4 2019-10-31 NA
5 2019-11-01 NA
6 2019-11-02 2
7 2019-11-03 NA

�Here’s what we did above:

• We used tidyr’s complete() function to fill-in the holes in the dates between 2019-10-28
and 2019-11-03.

• You can type ?complete into your R console to view the help documentation for this
function and follow along with the explanation below.

• The first argument to the complete() function is the data argument. You should pass
the name of the data frame that contains the column you want to fill-in to the data
argument. Above, we passed the reports data frame to the data argument using a pipe
operator.

• The second argument to the complete() function is the ... argument. This is where
you tell the complete() function which column you want to fill-in, or expand, and
give it instructions for doing so. Above, we asked complete() to make sure that each
day between 2019-10-28 and 2019-11-03 was included in our date column. We did so
by asking complete() to set the date column equal to the returned values from the
seq.Date() function.

Notice that all the days during our period of interest are now included in our count data.
However, by default, the value for each new row of the n column is set to NA. But, as we
already discussed, n isn’t missing for those days, it’s zero. We can change those values from
NA to zero by adjusting the value we pass to the fill argument. We’ll do that next:

reports %>%
count(date) %>%
complete(

date = seq.Date(
from = as.Date("2019-10-28"),
to = as.Date("2019-11-03"),
by = "days"

),
fill = list(n = 0)

)

# A tibble: 7 x 2
date n
<date> <int>

582



1 2019-10-28 0
2 2019-10-29 2
3 2019-10-30 1
4 2019-10-31 0
5 2019-11-01 0
6 2019-11-02 2
7 2019-11-03 0

Now, we can finally calculate the correct value for mean number of reports made per day
during the week of October 28th, 2019 to November 3rd, 2019:

reports %>%
count(date) %>%
complete(

date = seq.Date(
from = as.Date("2019-10-28"),
to = as.Date("2019-11-03"),
by = "days"

),
fill = list(n = 0)

) %>%
summarise(mean_reports_per_day = mean(n))

# A tibble: 1 x 1
mean_reports_per_day

<dbl>
1 0.714

That concludes the chapter on restructuring data. For now, it also concludes the part of this
book devoted to the basics of data management. At this point, you should have the tools you
need to tackle the majority of the common data management tasks that you will come across.
Further, there’s a good chance that the packages we’ve used in this part of the book will
contain a solution for the remaining data management challenges that we haven’t explicitly
covered. In the next part of the book, we will dive into repeated operations.

583



Part VI

Repeated Operations

584



33 Introduction to Repeated Operations

This part of the book is all about the DRY principle. We first discussed the DRY principle in
the section on creating and modifying multiple columns. As a reminder, DRY is an acronym
for “Don’t Repeat Yourself.” But, what does that mean?

Well, think back to the conditional operations chapter. In that chapter, we compared condi-
tional statements in R with asking our daughters to wear a raincoat if it’s raining. To extend
the analogy, now imagine that we wake up one morning and say, “please wear your raincoat
if it’s raining today - July 1st.” Then, we wake up the next morning and say, “please wear
your raincoat if it’s raining today - July 2nd.” Then, we wake up the next morning and say,
“please wear your raincoat if it’s raining today - July 3rd.” And, that pattern continues every
morning until our daughters move out of the house. That’s a ton of repetition!! Alternatively,
wouldn’t it be much more efficient to say, “please wear your raincoat on every day that it
rains,” just once?

The same logic applies to our R code. We often want to do the same (or very similar) thing
multiple times. This can result in many lines of code that are very similar and unnecessarily
repetitive, and this unnecessary repetition can occur in all phases of our projects.

585

https://en.wikipedia.org/wiki/Don%27t_repeat_yourself


Figure 33.1: Project phases

For example:

• We may need to write R code to import many different data sets. In such a situation, it
isn’t uncommon for the code that imports the data to be the same for each data set –
only the file name changes.

• We may need to recode certain values in multiple columns of our data frame to missing.
In such a situation, it isn’t uncommon for the code that recodes the values to be the
same for each column – only the column name changes.

• We may need to calculate the same set of statistical measures for many different variables
in our data frame. In such a situation, the code to calculate the statistical measures
doesn’t change – only the variables being passed to the code.

• We may need to create a table of results that includes statistical measures for many
different variables in our data frame. In such a situation, the code to prepare and
combine the statistical measures into a single table of results doesn’t change – only the
variables being passed to the code.

In all of these situations we are asking our R code to do something repeatedly, or iteratively,
but with a slight change each time. We can write a separate chunk of code for each time we
want to do that thing, or we can write one chunk of code that asks R to do that thing over
and over. Writing code in the later way will often result in R programs that:

586



• Are more concise. In other words, we can write one line of code (or relatively few lines
of code) instead of many lines of code. Further, such code generally removes “visual
clutter” (i.e., the repetitive stuff) that can obscure what the overarching intent of the
code.

• Contain fewer typos. Every keystroke we make is an opportunity to press the wrong key.
If we are writing fewer lines of code, then it logically follows that we are making fewer
keystrokes and creating fewer opportunities to hit the wrong key. Similarly, if we are
repeatedly copying and pasting code, we are creating opportunities to accidentally forget
to change a column name, date, file name, etc. in the pasted code.

• Are easier to maintain. If we want to change our code, we only have to change it in one
place instead of many places. For example, let’s say that we write R code to check the
weather every morning. Later, we decide that we want our R code to check the weather
and the traffic every morning. Would you rather add that additional request (i.e., check
the traffic) to a separate line of code for each day or to the one line of code that asks R
to check the weather every day?

Note

When we say “one line of code” above, we mean it figuratively. The code we use to remove
unnecessary repetition will not necessarily be on one line; however, it should generally
require less typing than code that includes unnecessary repetition.

So, writing code that is highly repetitive is usually not a great idea, and this part of the book
is all about teaching you to recognize and remove unnecessary repetition from your code. As
is often the case with R, there are multiple different methods we can use.

33.1 Multiple methods for repeated operations in R

In the chapters that follow, we will learn four different methods for removing unnecessary
repetition from our code. They are:

587



Figure 33.2: Four methods for removing unnecessary repetition

1. Writing our own functions that can be reused throughout our code.

2. Using dplyr’s column-wise operations.

3. Using for loops.

4. Using the purrr package.

It’s also important to recognize that each of the methods above can be used independently or
in combination with each other. We will see examples of both.

33.2 Tidy evaluation

In case it isn’t obvious to you by now, we’re fans of the tidyverse packages (i.e., dplyr,
ggplot2, tidyr, etc.). We use dplyr, in particular, in virtually every single one of our R
programs. The use of non-standard evaluation is just one of the many aspects of the
tidyverse packages that we’re fans of. As a reminder, among other things, non-standard
evaluation is what allows us to refer to data frame columns without using dollar sign or bracket
notation (i.e., data masking). However, non-standard evaluation will create some challenges
for us when we try to use functions from tidyverse packages inside of functions and for loops
that we write ourselves. Therefore, we will have to learn more about tidy evaluation if we

588



want to continue to use the tidyverse packages that we’ve been using throughout the book
so far.

Tidy evaluation can be tricky even for experienced R programmers to wrap their heads around
at first. Therefore, it might not be productive for us to try to learn a lot about the theory
behind, or internals of, tidy evaluation as a standalone concept. Instead, in the chapters that
follow, we plan to sprinkle in just enough tidy evaluation to accomplish the task at hand. As
a little preview, a telltale sign that we are using tidy evaluation will be when you start seeing
the {{ (said, curly-curly) operator and the !! (said, bang bang) operator. Hopefully, this will
all make more sense in the next chapter when we start to get into some examples.

We recommend the following resources for those of you who are interested in developing a
deeper understanding of rlang and tidy evaluation:

1. Programming with dplyr. Accessed July 31, 2020. https://dplyr.tidyverse.org/articles/programming.html

2. Wickham H. Introduction. In: Advanced R. Accessed July 31, 2020. https://adv-
r.hadley.nz/metaprogramming.html

Now, let’s learn how to write our own functions!�

589



34 Writing Functions

Have you noticed how we will often calculate the same statistical measures for many different
variables in our data? For example, let’s say that we have some pretty standard data about
some study participants that looks like this:

library(dplyr)

study <- tibble(
age = c(32, 30, 32, 29, 24, 38, 25, 24, 48, 29, 22, 29, 24, 28, 24, 25,

25, 22, 25, 24, 25, 24, 23, 24, 31, 24, 29, 24, 22, 23, 26, 23,
24, 25, 24, 33, 27, 25, 26, 26, 26, 26, 26, 27, 24, 43, 25, 24,
27, 28, 29, 24, 26, 28, 25, 24, 26, 24, 26, 31, 24, 26, 31, 34,
26, 25, 27, NA),

age_group = c(2, 2, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1,
1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2,
2, 1, 1, 1, NA),

gender = c(2, 1, 1, 2, 1, 1, 1, 2, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1,
1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1,
1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 1, 1, 2, 1, 2, 1,
1, 1, 2, 1, NA),

ht_in = c(70, 63, 62, 67, 67, 58, 64, 69, 65, 68, 63, 68, 69, 66, 67, 65,
64, 75, 67, 63, 60, 67, 64, 73, 62, 69, 67, 62, 68, 66, 66, 62,
64, 68, NA, 68, 70, 68, 68, 66, 71, 61, 62, 64, 64, 63, 67, 66,
69, 76, NA, 63, 64, 65, 65, 71, 66, 65, 65, 71, 64, 71, 60, 62,
61, 69, 66, NA),

wt_lbs = c(216, 106, 145, 195, 143, 125, 138, 140, 158, 167, 145, 297, 146,
125, 111, 125, 130, 182, 170, 121, 98, 150, 132, 250, 137, 124,
186, 148, 134, 155, 122, 142, 110, 132, 188, 176, 188, 166, 136,
147, 178, 125, 102, 140, 139, 60, 147, 147, 141, 232, 186, 212,
110, 110, 115, 154, 140, 150, 130, NA, 171, 156, 92, 122, 102,
163, 141, NA),

bmi = c(30.99, 18.78, 26.52, 30.54, 22.39, 26.12, 23.69, 20.67, 26.29,
25.39, 25.68, 45.15, 21.56, 20.17, 17.38, 20.8, 22.31, 22.75,
26.62, 21.43, 19.14, 23.49, 22.66, 32.98, 25.05, 18.31, 29.13,

590



27.07, 20.37, 25.01, 19.69, 25.97, 18.88, 20.07, NA, 26.76,
26.97, 25.24, 20.68, 23.72, 24.82, 23.62, 18.65, 24.03, 23.86,
10.63, 23.02, 23.72, 20.82, 28.24, NA, 37.55, 18.88, 18.3,
19.13, 21.48, 22.59, 24.96, 21.63, NA, 29.35, 21.76, 17.97,
22.31, 19.27, 24.07, 22.76, NA),

bmi_3cat = c(3, 1, 2, 3, 1, 2, 1, 1, 2, 2, 2, 3, 1, 1, 1, 1, 1, 1, 2, 1, 1,
1, 1, 3, 2, 1, 2, 2, 1, 2, 1, 2, 1, 1, NA, 2, 2, 2, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 2, NA, 3, 1, 1, 1, 1, 1, 1, 1, NA, 2, 1,
1, 1, 1, 1, 1, NA)

) %>%
mutate(

age_group = factor(age_group, labels = c("Younger than 30", "30 and Older")),
gender = factor(gender, labels = c("Female", "Male")),
bmi_3cat = factor(bmi_3cat, labels = c("Normal", "Overweight", "Obese"))

) %>%
print()

# A tibble: 68 x 7
age age_group gender ht_in wt_lbs bmi bmi_3cat

<dbl> <fct> <fct> <dbl> <dbl> <dbl> <fct>
1 32 30 and Older Male 70 216 31.0 Obese
2 30 30 and Older Female 63 106 18.8 Normal
3 32 30 and Older Female 62 145 26.5 Overweight
4 29 Younger than 30 Male 67 195 30.5 Obese
5 24 Younger than 30 Female 67 143 22.4 Normal
6 38 30 and Older Female 58 125 26.1 Overweight
7 25 Younger than 30 Female 64 138 23.7 Normal
8 24 Younger than 30 Male 69 140 20.7 Normal
9 48 30 and Older Male 65 158 26.3 Overweight
10 29 Younger than 30 Male 68 167 25.4 Overweight
# i 58 more rows

When we have data like this, it’s pretty common to calculate something like the number of
missing values, mean, median, min, and max for all of the continuous variables. So, we might
use the following code to calculate these measures:

study %>%
summarise(

n_miss = sum(is.na(age)),
mean = mean(age, na.rm = TRUE),
median = median(age, na.rm = TRUE),

591



min = min(age, na.rm = TRUE),
max = max(age, na.rm = TRUE)

)

# A tibble: 1 x 5
n_miss mean median min max
<int> <dbl> <dbl> <dbl> <dbl>

1 1 26.9 26 22 48

Great! Next, we want to do the same calculations for ht_in. Of course, we don’t want to type
everything in that code chunk again, so we copy and paste. And change all the instances of
age to ht_in:

study %>%
summarise(

n_miss = sum(is.na(ht_in)),
mean = mean(ht_in, na.rm = TRUE),
median = median(ht_in, na.rm = TRUE),
min = min(ht_in, na.rm = TRUE),
max = max(ht_in, na.rm = TRUE)

)

# A tibble: 1 x 5
n_miss mean median min max
<int> <dbl> <dbl> <dbl> <dbl>

1 3 66.0 66 58 76

Now, let’s do the same calculations for wt_lbs and bmi. Again, we will copy and paste, and
change the variable name as needed:

study %>%
summarise(

n_miss = sum(is.na(wt_lbs)),
mean = mean(wt_lbs, na.rm = TRUE),
median = median(wt_lbs, na.rm = TRUE),
min = min(ht_in, na.rm = TRUE),
max = max(wt_lbs, na.rm = TRUE)

)

592



# A tibble: 1 x 5
n_miss mean median min max
<int> <dbl> <dbl> <dbl> <dbl>

1 2 148. 142. 58 297

study %>%
summarise(

n_miss = sum(is.na(bmi)),
mean = mean(bmi, na.rm = TRUE),
median = median(bmi, na.rm = TRUE),
min = min(bmi, na.rm = TRUE),
max = max(bmi, na.rm = TRUE)

)

# A tibble: 1 x 5
n_miss mean median min max
<int> <dbl> <dbl> <dbl> <dbl>

1 4 23.6 22.9 10.6 45.2

And, we’re done!

However, there’s a problem. Did you spot it? We accidentally forgot to change ht_in to
wt_lbs in the min calculation above. Therefore, our results incorrectly indicate that the
minimum weight was 58 lbs. Part of the reason for making this mistake in the first place is
that there is a fair amount of visual clutter in each code chunk. In other words, it’s hard to
quickly scan each chunk and see only the elements that are changing.

Additionally, each code chunk was about 8 lines of code. Even with only 4 variables, that’s
still 32 lines. We can improve on this code by writing our own function. That’s exactly what
we will do in the code chunk below. For now, don’t worry if you don’t understand how the
code works. We will dissect it later.

continuous_stats <- function(var) {
study %>%

summarise(
n_miss = sum(is.na({{ var }})),
mean = mean({{ var }}, na.rm = TRUE),
median = median({{ var }}, na.rm = TRUE),
min = min({{ var }}, na.rm = TRUE),
max = max({{ var }}, na.rm = TRUE)

)
}

593



Now, let’s use the function we just created above to once again calculate the descriptive
measures we are interested in.

continuous_stats(age)

# A tibble: 1 x 5
n_miss mean median min max
<int> <dbl> <dbl> <dbl> <dbl>

1 1 26.9 26 22 48

continuous_stats(ht_in)

# A tibble: 1 x 5
n_miss mean median min max
<int> <dbl> <dbl> <dbl> <dbl>

1 3 66.0 66 58 76

continuous_stats(wt_lbs)

# A tibble: 1 x 5
n_miss mean median min max
<int> <dbl> <dbl> <dbl> <dbl>

1 2 148. 142. 60 297

continuous_stats(bmi)

# A tibble: 1 x 5
n_miss mean median min max
<int> <dbl> <dbl> <dbl> <dbl>

1 4 23.6 22.9 10.6 45.2

Pretty cool, right? We reduced 32 lines of code to 13 lines of code! Additionally, it’s very
easy to quickly scan our code and see that the only thing changing from chunk-to-chunk is
the name of the variable that we are passing to our function and ensure that it is actually
changing. As an added bonus, because we’ve strategically given our function an informative
name, the intent behind what we are trying to accomplish is clearer now – we are calculating
summary statistics about our continuous variables.

Hopefully, this little demonstration has left you feeling like writing your own functions can
be really useful, and maybe even kind of fun. We’re going to get into the nuts and bolts of
how to write your own functions shortly, but first let’s briefly discuss when to write your own
functions.

594



34.1 When to write functions

Hadley Wickham, prolific R developer and teacher says, “You should consider writing a func-
tion whenever you’ve copied and pasted a block of code more than twice (i.e. you now have
three copies of the same code).”9 We completely agree with this general sentiment. We’ll
only amend our advice to you slightly. Specifically, you should consider using an appropriate
method for repeating operations whenever you’ve copied and pasted a block of code more than
twice. In other words, writing a function is not the only option available to us when we notice
ourselves copying and pasting code.

34.2 How to write functions

Now, the fun part – writing our own functions. Writing functions can seem intimidating to
many people at first. However, the basics are actually pretty simple.

34.2.1 The function() function

It all starts with the function() function. This is how you tell R that you are about to write
your own function.

Figure 34.1: The function() function.

595



If you think back to the chapter on Speaking R’s language, we talked about the analogy that
is sometimes drawn between functions and factories.

Figure 34.2: A factory making bicycles.

To build on that analogy, thefunction() function is sort of like the factory building. Without
it, there is no factory, but an empty building alone doesn’t do anything interesting:

function()

Error in parse(text = input): <text>:2:0: unexpected end of input
1: function()

^

In order to build our bicycles, we need to add some workers and equipment to our empty
factory building. The R function equivalent to the workers and equipment is the function
body.

596



Figure 34.3: The function body.

And just like the factory needs doors to contain our workers and equipment and keep them
safe (This is admittedly a bit of a reach, but just go with it), our function body needs to be
wrapped with curly braces.

597



Figure 34.4: Curly braces around the function body.

We already talked about how the values we pass to arguments are raw material inputs that go
into the factory.

598



Figure 34.5: The function argument(s).

In the bicycle factory example, the raw materials were steel and rubber. In the function
displayed above, the raw materials are variables.

If we want to be able to call our function (i.e., use it) later, then we have to have some way
to refer to it. Therefore, we will assign our function a name.

599



Figure 34.6: The named function.

34.2.2 The function writing process

So, we have some idea about why writing our own functions can be a good idea. We have some
idea about when to write functions (i.e., don’t repeat yourself… more than twice). And, we
now know what the basic components of functions are. They are the function() function, the
function body (wrapped in curly braces), the function argument(s), and the function name.
But, if this is your first time being exposed to functions, then you may still be feeling like you
aren’t quite sure how to get started with writing your own. So, here’s a little example of how
a function writing workflow could go.

First, let’s simulate some new data for this example. Let’s say we have two data frames that
contain first and last names:

people_1 <- tribble(
~id_1, ~name_first_1, ~name_last_1, ~street_1,
1, "Easton", NA, "Alameda",
2, "Elias", "Salazar", "Crissy Field",
3, "Colton", "Fox", "San Bruno",
4, "Cameron", "Warren", "Nottingham",
5, "Carson", "Mills", "Jersey",
6, "Addison", "Meyer", "Tingley",

600



7, "Aubrey", "Rice", "Buena Vista",
8, "Ellie", "Schmidt", "Division",
9, "Robert", "Garza", "Red Rock",
10, "Stella", "Daniels", "Holland"

) %>%
print()

# A tibble: 10 x 4
id_1 name_first_1 name_last_1 street_1

<dbl> <chr> <chr> <chr>
1 1 Easton <NA> Alameda
2 2 Elias Salazar Crissy Field
3 3 Colton Fox San Bruno
4 4 Cameron Warren Nottingham
5 5 Carson Mills Jersey
6 6 Addison Meyer Tingley
7 7 Aubrey Rice Buena Vista
8 8 Ellie Schmidt Division
9 9 Robert Garza Red Rock
10 10 Stella Daniels Holland

people_2 <- tribble(
~id_2, ~name_first_2, ~name_last_2, ~street_2,
1, "Easton", "Stone", "Alameda",
2, "Elas", "Salazar", "Field",
3, NA, "Fox", NA,
4, "Cameron", "Waren", "Notingham",
5, "Carsen", "Mills", "Jersey",
6, "Adison", NA, NA,
7, "Aubrey", "Rice", "Buena Vista",
8, NA, "Schmidt", "Division",
9, "Bob", "Garza", "Red Rock",
10, "Stella", NA, "Holland"

) %>%
print()

# A tibble: 10 x 4
id_2 name_first_2 name_last_2 street_2

<dbl> <chr> <chr> <chr>
1 1 Easton Stone Alameda
2 2 Elas Salazar Field

601



3 3 <NA> Fox <NA>
4 4 Cameron Waren Notingham
5 5 Carsen Mills Jersey
6 6 Adison <NA> <NA>
7 7 Aubrey Rice Buena Vista
8 8 <NA> Schmidt Division
9 9 Bob Garza Red Rock
10 10 Stella <NA> Holland

In this scenario, we want to see if first name, last name, and street name match at each ID
between our data frames. More specifically, we want to combine the two data frames into a
single data frame and create three new dummy variables that indicate whether first name, last
name, and address match respectively. Let’s go ahead and combine the data frames now:

people <- people_1 %>%
bind_cols(people_2) %>%
print()

# A tibble: 10 x 8
id_1 name_first_1 name_last_1 street_1 id_2 name_first_2 name_last_2

<dbl> <chr> <chr> <chr> <dbl> <chr> <chr>
1 1 Easton <NA> Alameda 1 Easton Stone
2 2 Elias Salazar Crissy Field 2 Elas Salazar
3 3 Colton Fox San Bruno 3 <NA> Fox
4 4 Cameron Warren Nottingham 4 Cameron Waren
5 5 Carson Mills Jersey 5 Carsen Mills
6 6 Addison Meyer Tingley 6 Adison <NA>
7 7 Aubrey Rice Buena Vista 7 Aubrey Rice
8 8 Ellie Schmidt Division 8 <NA> Schmidt
9 9 Robert Garza Red Rock 9 Bob Garza

10 10 Stella Daniels Holland 10 Stella <NA>
# i 1 more variable: street_2 <chr>

Now, our first attempt at creating the dummy variables might look something like this:

people %>%
mutate(

name_first_match = name_first_1 == name_first_2,
name_last_match = name_last_1 == name_last_2,
street_match = street_1 == street_2

) %>%

602



# Order like columns next to each other for easier comparison
select(id_1, starts_with("name_f"), starts_with("name_l"), starts_with("s"))

# A tibble: 10 x 10
id_1 name_first_1 name_first_2 name_first_match name_last_1 name_last_2

<dbl> <chr> <chr> <lgl> <chr> <chr>
1 1 Easton Easton TRUE <NA> Stone
2 2 Elias Elas FALSE Salazar Salazar
3 3 Colton <NA> NA Fox Fox
4 4 Cameron Cameron TRUE Warren Waren
5 5 Carson Carsen FALSE Mills Mills
6 6 Addison Adison FALSE Meyer <NA>
7 7 Aubrey Aubrey TRUE Rice Rice
8 8 Ellie <NA> NA Schmidt Schmidt
9 9 Robert Bob FALSE Garza Garza
10 10 Stella Stella TRUE Daniels <NA>
# i 4 more variables: name_last_match <lgl>, street_1 <chr>, street_2 <chr>,
# street_match <lgl>

Let’s take a moment to review the results we got. In row 1 we see that “Easton” and “Easton”
match, and the value for name_first_match is TRUE. So far, so good. In row 2, we see that
“Elias” and “Ela” do not match, and the value for name_first_match is FALSE. That is also
the result we wanted. In row 3, we see that “Colton” and “NA” do not match; however, the
value in name_first_match is NA. In this case, this is not the result we want. We have a
problem. That brings us to the first step in this workflow.

34.2.2.1 Spotting a need for a function

In some cases, the need is purely repetitive code – like the example at the beginning of this
chapter. In other cases, like this one, a built-in R function is not giving the the desired result.

Here is the basic problem in this particular case:

1 == 1

[1] TRUE

1 == 2

[1] FALSE

603



1 == NA

[1] NA

NA == 2

[1] NA

NA == NA

[1] NA

The equality operator (==) always returns NA when one, or both, of the values being tested
is NA. Often, that is exactly the result we want. In this case, however, it is not. Fortunately,
we can get the result we want by writing our own function. That brings us to step 2 in the
workflow.

34.2.2.2 Making the code work for one specific case

Don’t try to solve the entire problem for every case right out of the gate. Instead, solve one
problem for a specific case, and then build on that win! Let’s start by trying to figure out how
to get the result we want for name_first_match in row 3 of our example data.

"Colton" == NA

[1] NA

This is essentially what we already had above. But, we want to change our result from NA to
FALSE. Let’s start by saving the result to an object that we can manipulate:

result <- "Colton" == NA
result

[1] NA

So, now the value returned by the equality comparison is saved to an object named result.
Let’s go ahead and use a conditional operation to change the value of result to FALSE when
it is initially NA, and leave it alone otherwise:

604



result <- "Colton" == NA
result <- if_else(is.na(result), FALSE, result)
result

[1] FALSE

Alright! This worked! At least, it worked for this case. That brings us to step 3 in the
workflow.

34.2.2.3 Making the solution into a “function”

How can this be done? Well, first we start with a skeleton of the function components we
discussed above. They are the function() function, the function body (wrapped in curly
braces), and the function name. At the moment, we don’t have any arguments. We’ll explain
why soon.

is_match <- function() {

}

Then, we literally copy the solution from above and paste it into the function body, making
sure to indent the code. Next, we need to run the code chunk to create the function. After
doing so, you should see the function appear in your global environment. Keep in mind, this
creates the function so that we can use it later, but the function isn’t immediately run.

is_match <- function() {
result <- "Colton" == NA
result <- if_else(is.na(result), FALSE, result)
result

}

Now, let’s test out our shiny new function. To run the function, we can simply type the
function name, with the parentheses, and run the code chunk.

is_match()

[1] FALSE

605



And, it works! When we ask R to run a function we are really asking R to run the code in the
body of the function. In this case, we know that the code in the body of the function results
in the value FALSE because this results in FALSE:

result <- "Colton" == NA
result <- if_else(is.na(result), FALSE, result)
result

[1] FALSE

And all we did was stick that code in the function body. Said another way, this:

result <- "Colton" == NA
result <- if_else(is.na(result), FALSE, result)
result

and this:

is_match()

mean essentially the same thing to R now if that makes sense. Hang in there even if it still
isn’t quite clear. We’ll get more practice soon.

At this point, you may be wondering about the function arguments, and why there aren’t any.
Well, we can try passing a value to our is_match() function. How about we pass the name
“Easton” from the first row of our example data above:

is_match(name = "Easton")

Error in is_match(name = "Easton"): unused argument (name = "Easton")

But, we get an error. R doesn’t know what the name argument is or what to do with the
values we are passing to it. That’s because we never said anything about any arguments when
we created the is_match() function. We left the parentheses where the function arguments
go empty.

is_match <- function() {
result <- "Colton" == NA
result <- if_else(is.na(result), FALSE, result)
result

}

606



Let’s create is_match() again, but this time, let’s add an argument:

is_match <- function(name) {
result <- "Colton" == NA
result <- if_else(is.na(result), FALSE, result)
result

}

is_match(name = "Easton")

[1] FALSE

Hmmm, let’s add another argument and see what happens:

is_match <- function(name_1, name_2) {
result <- "Colton" == NA
result <- if_else(is.na(result), FALSE, result)
result

}

is_match(name_1 = "Easton", name_2 = "Easton")

[1] FALSE

It looks as though the arguments we are adding don’t have any effect on our returned value.
That’s because they don’t. We oversimplified how function arguments work just a little bit
in our factory analogy earlier. When we add arguments to function our definition (i.e., when
we create the function) it’s really more like adding a loading dock to our factory. It’s a place
where our factory can receive raw materials. However, there still needs to be equipment inside
the factory that can use those raw materials. If we drop off a load of rubber at our bicycle
factory, but there’s no machine inside our bicycle factory that uses rubber, then we wouldn’t
expect dropping off the rubber to have any effect on the outputs coming out of the factory.

We have similar situation above. We dropped the name “Easton” off at our is_match()
function, but nothing inside our is_match() function can use the name “Easton”. There’s no
machinery to plug that name into. That brings us to step 4 in the workflow.

607



34.2.2.4 Start generalizing the function

As it stands right now, our is_match() function can’t accept any new names. The only result
we will ever get from the current version of our is_match() function is the result of testing
the equality between the values “Colton” and NA, and then converting that value to FALSE.
This isn’t a problem if the only values we care about comparing are “Colton” and NA, but
of course, that isn’t the case. We need a way to make our function work for other values too.
Said another way, we need to make our function more general.

As you may have guessed already, that will require us creating an argument to receive input
values and a place to use those input values in the function body. Let’s start by adding a
first_name argument:

is_match <- function(first_name) {
result <- first_name == NA
result <- if_else(is.na(result), FALSE, result)
result

}

is_match(first_name = "Easton")

[1] FALSE

�Here’s what we did above:

• We once again created our is_match() function. However, this time we created it with a
single argument – first_name. We didn’t have to name the argument first_name. We
could have named it anything that we can name any other variable in R. But, first_name
seemed like a reasonable choice since the value we want to pass to this argument is a
person’s first name. The first_name argument will receive the first name values that
we want to pass to this function.

• We replaced the constant value “Colton” in the function body with the variable
first_name. It isn’t a coincidence that the name of the variable first_name matches
the name of the argument first_name. R will take whatever value we give to the
first_name argument and pass it to the variable with a matching name inside the
function body. Then, R will run the code inside the function body as though the
variable is the value we passed to it.

So, when we type:

608



is_match(first_name = "Easton")

[1] FALSE

R sees:

result <- "Easton" == NA
result <- if_else(is.na(result), FALSE, result)
result

[1] FALSE

It looks like our is_match() function is still going to return a value of FALSE no mat-
ter what value we pass to the first_name function. That’s because no matter what
value we pass to result <- first_name == NA, result will equal NA. Then, result <-
if_else(is.na(result), FALSE, result) will change the value of result to FALSE. So,
we still need to make our function more general. As you may have guessed, we can do that
by adding a second argument:

is_match <- function(first_name, first_name) {
result <- first_name == first_name
result <- if_else(is.na(result), FALSE, result)
result

}

Error: repeated formal argument 'first_name' (<input>:1:34)

Uh, oh! We got an error. This error is telling us that each function argument must have a
unique name. Let’s try again:

is_match <- function(first_name_1, first_name_2) {
result <- first_name_1 == first_name_2
result <- if_else(is.na(result), FALSE, result)
result

}

is_match(first_name_1 = "Easton", first_name_2 = "Colton")

[1] FALSE

609



Is this working or is our function still just returning FALSE no matter what we pass to the
arguments? Let’s try to pass “Easton” to first_name_1 and first_name_2 and see what
happens:

is_match(first_name_1 = "Easton", first_name_2 = "Easton")

[1] TRUE

We got a TRUE! That’s exactly the result we wanted! Let’s do one final check. Let’s see what
happens when we pass NA to our is_match() function:

is_match(first_name_1 = "Easton", first_name_2 = NA)

[1] FALSE

Perfect! It looks like our function is finally ready to help us solve the problem we identified
way back at step one. But, while we are talking about generalizing our function, shouldn’t we
go ahead and use more general names for our function arguments? We were only using first
names when we were developing our function, but we are going to use our function to compare
last names and street names as well. In fact, our function will compare any two values and
tell us whether or not they are a match. So, let’s go ahead and change the argument names
to value_1 and value_2:

is_match <- function(value_1, value_2) {
result <- value_1 == value_2 # Don't forget to change the variable names here!!
result <- if_else(is.na(result), FALSE, result)
result

}

Now, we are ready to put our function to work testing whether or not the first name, last
name, and street name match at each ID between our data frames:

people %>%
mutate(

name_first_match = is_match(name_first_1, name_first_2),
name_last_match = is_match(name_last_1, name_last_2),
street_match = is_match(street_1, street_2)

) %>%
# Order like columns next to each other for easier comparison
select(id_1, starts_with("name_f"), starts_with("name_l"), starts_with("s"))

610



# A tibble: 10 x 10
id_1 name_first_1 name_first_2 name_first_match name_last_1 name_last_2

<dbl> <chr> <chr> <lgl> <chr> <chr>
1 1 Easton Easton TRUE <NA> Stone
2 2 Elias Elas FALSE Salazar Salazar
3 3 Colton <NA> FALSE Fox Fox
4 4 Cameron Cameron TRUE Warren Waren
5 5 Carson Carsen FALSE Mills Mills
6 6 Addison Adison FALSE Meyer <NA>
7 7 Aubrey Aubrey TRUE Rice Rice
8 8 Ellie <NA> FALSE Schmidt Schmidt
9 9 Robert Bob FALSE Garza Garza
10 10 Stella Stella TRUE Daniels <NA>
# i 4 more variables: name_last_match <lgl>, street_1 <chr>, street_2 <chr>,
# street_match <lgl>

Works like a charm! Notice, however, that we still have a lot of repetition in the code above.
Unfortunately, we still don’t have all the tools we need to remove it. But, we will soon.

At this point in the chapter, the hope is that you’re developing a feel for how to write your own
functions and why that might be useful. With R, it’s possible to write functions that are very
complicated. But, hopefully, the examples above show you that functions don’t have to be
complicated to be useful. In that spirit, we will not dive too much deeper into the details and
technicalities of function writing at this point. However, there are a few details that should
be at least mentioned so that you aren’t caught off guard by them as you begin to write your
own functions. We will touch on each below, and then wrap up this chapter with resources for
those of you who wish to dive deeper.

34.3 Giving your function arguments default values

We’ve been introducing new functions to you all throughout the book so far. Each time, we
try to discuss some, or all, of the function’s arguments – including the default values that
are passed to the arguments. Most of you have probably developed some sort of intuitive
understanding of just what it meant for the argument to have a default value. However, this
seems like an appropriate point in the book to talk about default arguments a little more
explicitly and show you how to add them to the functions you write.

Let’s say that we want to write a function that will increase the value of a number, or set of
numbers, incrementally. We may start with something like this:

611



increment <- function(x) {
x + 1

}

�Here’s what we did above:

• We created our own function that will increase the value of a number, or set of numbers,
incrementally. Specifically, when we pass a number to the x argument the value of that
number plus one will be returned.

Let’s go ahead and use our function now:

increment(2)

[1] 3

�Here’s what we did above:

• We passed the value 2 to the x argument of our increment() function. The x argument
then passed the value 2 to the x variable in the function body. Said another way, R
replaced the x variable in the function body with the value 2. Then, R executed the
code in the function body. In this case, the code in the function body added the values
2 and 1 together. Finally, the function returned the value 3.

Believe it or not, our simple little increment() function is a full-fledged R function. It is just
as legitimate as any other R function we’ve used in this book. But, let’s go ahead and add a
little more to its functionality. For example, maybe we want to be able to increment by values
other than just one. How might we do that?

Hopefully, your first thought was to replace the constant value 1 in the function body with a
variable that can have any number passed to it. That’s exactly what we will do next:

increment <- function(x, by) {
x + by

}

�Here’s what we did above:

• We created our own function that will increase the value of a number, or set of numbers,
incrementally. Specifically, when we pass a number to the x argument the value of that
number will be incremented by the value passed to the by argument.

612



What value should increment() return if we pass 2 to the x argument and 2 to the by
argument?

increment(2, 2)

[1] 4

Hopefully, that’s what you were expecting. But, now what happens if we don’t pass any value
to the by argument?

increment(2)

Error in increment(2): argument "by" is missing, with no default

We get an error saying that there wasn’t any value passed to the by argument, and the by
argument doesn’t have a default value. But, we are really lazy, and it takes a lot of work to
pass a value to the by argument every time we use the increment() function. Plus, we almost
always only want to increment our numbers by one. In this case, our best course of action is
to set the default value of by to 1. Fortunately for us, doing so is really easy!

increment <- function(x, by = 1) {
x + by

}

�Here’s what we did above:

• We created our own function that will increase the value of a number, or set of numbers,
incrementally. Specifically, when we pass a number to the x argument the value of that
number will be incremented by the value passed to the by argument. The default value
passed to the by argument is 1. Said another way, R will pretend that we passed the
value 1 to the by argument if we don’t explicitly pass a number other than 1 to the by
argument.

• All we had to do to give by a default value was type = followed by the value (i.e., 1)
when we created the function.

Now let’s try out our latest version of increment():

# Default value
increment(2)

[1] 3

613



# Passing the value 1
increment(2, 1)

[1] 3

# Passing a value other than 1
increment(2, 2)

[1] 4

# Passing a vector of numbers to the x argument
increment(c(1, 2, 3), 2)

[1] 3 4 5

34.4 The values your functions return

When we run our functions, they typically execute each line of code in the function body, one
after another, starting with the first line and ending at the last line. Therefore, the value that
your function returns (i.e., the thing that comes out of the factory) is typically dictated by the
last line of code in your function body.

To explain this further, let’s take another look at our is_match() function:

is_match <- function(value_1, value_2) {
result <- value_1 == value_2 # Do this first
result <- if_else(is.na(result), FALSE, result) # Then this
result # Then this

}

Why did we type that third line of code? Afterall, that line of code isn’t doing anything. Well,
let’s see what happens if we take it out:

is_match <- function(value_1, value_2) {
result <- value_1 == value_2
result <- if_else(is.na(result), FALSE, result)

}

614



is_match("Easton", "Easton")

It appears as though nothing happened! Did our function break?

Let’s think about what typically happens when we use R’s built-in functions. When we don’t
assign the value returned by the function to an object, then the returned value is printed to
the screen:

sum(1, 1)

[1] 2

But, when we do assign the value returned by the function to an object, nothing is printed to
the screen:

x <- sum(1, 1)

The same thing is happening in our function above. The last line of our function body is
assigning a value (i.e., TRUE or FALSE) to the variable result. Just like x <- sum(1, 1) didn’t
print to the screen, result <- if_else(is.na(result), FALSE, result) doesn’t print to
the screen when we run is_match("Easton", "Easton") using this version of is_match().

However, we can see in the example below that result of the operations being executed inside
the function body can still be assigned to an object in our global environment, and we can
print the contents of that object to screen:

x <- is_match("Easton", "Easton")
x

[1] TRUE

If all of that seems confusing, here is the bottom line. In general, it’s a best practice for your
function to print its return value to the screen. You can do this in one of three ways:

1� The value that results from the code in the last line of the function body isn’t assigned to
anything. We saw an example of this above with our increment() function:

increment <- function(x, by = 1) {
x + by # Last line doesn't assign the value to an object

}

615



increment(2)

[1] 3

2� If you assign values to objects inside your function, then type the name of the object that
contains the value you want your function to return on the last line of the function body. We
saw an example of this with our is_match() function. We can also amend our increment()
function follow this pattern:

increment <- function(x, by = 1) {
out <- x + by # Now we assign the value to an object
out # Type object name on last line of the function body

}

increment(2)

[1] 3

3� Use the return() function.

increment <- function(x, by = 1) {
out <- x + by
return(out)

}

increment(2)

[1] 3

So, which method should you use? Well, for all but the simplest functions (like the one above)
method 1 is not considered good coding practice. Method 3 may seem like it’s the most explicit;
however, it’s actually considered best practice to use the return() function only when you
want your function to return its value before R reaches the last line of the function body. For
example, let’s add another line of code to our function body that adds another 1 to the value
of out:

increment <- function(x, by = 1) {
out <- x + by
out <- out + 1 # Adding an extra 1
return(out) # Return still in the last line

}

616



increment(2)

[1] 4

Now, let’s move return(out) to the second line of the function body – above the line of code
that adds an additional 1 to the value of out:

increment <- function(x, by = 1) {
out <- x + by
return(out) # Return in the second line above adding an extra 1
out <- out + 1 # Adding an extra 1

}

increment(2)

[1] 3

In the example above, the last 1 wasn’t added to the value of out because we used the return()
function. Said another way, increment() returned the value of out “early”, and the last line
of the function body was never executed.

In the example above, using the return() function in the way that we did obviously makes
no sense. It was just meant to illustrate what the return() function can do. The return()
function doesn’t actually become useful until we start writing more complex functions. But,
because the return() function has the special ability to end the execution of the function
body early, it’s considered a best practice to only use it for that purpose.

Therefore, in most situations, you will want to use method 2 (i.e., object name on last line)
when writing your own functions.

One final note before we move on to the next section. Notice that we never used the print()
function on the last line of our code. This was intentional. Using print() will give you the
result you expect when you don’t assign the value that your function returns to an object in
your global environment:

increment <- function(x, by = 1) {
out <- x + by
print(out)

}

617



increment(2)

[1] 3

But, it will not give you the result you want if you do assign the value that your function
returns to an object in your global environment:

increment <- function(x, by = 1) {
out <- x + by
print(out)

}

x <- increment(2)

[1] 3

x

[1] 3

34.5 Lexical scoping and functions

If you have been following along with the code above on your computer, you may have noticed
that the objects we create inside our functions do not appear in our global environment. If
you haven’t been following along, you may want to jump on your computer really quickly for
this section (or just take our word for it).

The reason the objects we created inside our functions do not appear in our global environment
is that R actually has multiple environments were objects can live. Additionally, R uses
something called lexical scoping rules to look for the objects you refer to in your R code. The
vast majority of the time, we won’t need to concern ourselves much with any of these other
environments or the lexical scoping rules. However, function writing does require us to have
some minimal understanding of these concepts. At the very least, you should be aware of the
following when writing your own functions:

1� Objects we create inside of functions don’t live in our global environment and we can’t do
anything with them outside of the function we created them in.

In the example below, we create an object named out inside of the increment() function:

618



increment <- function(x, by = 1) {
out <- x + by # Assign the value to the out object inside the function
out

}

We then use the function:

x <- increment(2)
x

[1] 3

However, the out object is not available to us:

out

Error: object 'out' not found

2� If the function we write can’t find the object it’s looking for inside the function body, then
it will try to find it in the global environment.

For example, let’s create a new function named add that adds the values of x and y together
in its function body. Notice, however, that there is no y argument to pass a value to, and that
y is never assigned a value inside of the add() function:

add <- function(x) {
x + y

}

When we call the function:

add(2)

Error in add(2): object 'y' not found

We get an error. R can’t find the object y. Now let’s create a y object in our global environ-
ment:

619



y <- 100

And call the add() function again:

add(2)

[1] 102

As you can see, R wasn’t able to find a value for y inside of the function body so it looked
outside of the function in the global environment. This is definitely something to be aware of,
but usually isn’t an actual problem.

For starters, there is no obviously good reason to add a variable to your function body without
assigning it a value inside the function body or matching it to a function argument. In other
words, there’s generally no good reason to have variables that serve no purpose floating around
inside your functions.

If you do assign it a value inside the function, then R will not look outside of the function for
a value:

add <- function(x) {
y <- 1
x + y

}

y <- 100
add(2)

[1] 3

Likewise, if you create the function with a matching argument, then R will not look outside
of the function for a value:

add <- function(x, y) {
x + y

}

y <- 100
add(2)

Error in add(2): argument "y" is missing, with no default

Again, this aspect of the lexical scoping rules is something to be aware of, but generally isn’t
a problem in practice.

620



34.6 Tidy evaluation

Now that you have all the basics of function writing under your belt, let’s take look at what
happens when we try to write functions that use tidyverse package functions in the function
body.

For this section, let’s return to our study data we used for the first example in this chapter.
As a reminder, here’s what the data looks like:

study

# A tibble: 68 x 7
age age_group gender ht_in wt_lbs bmi bmi_3cat

<dbl> <fct> <fct> <dbl> <dbl> <dbl> <fct>
1 32 30 and Older Male 70 216 31.0 Obese
2 30 30 and Older Female 63 106 18.8 Normal
3 32 30 and Older Female 62 145 26.5 Overweight
4 29 Younger than 30 Male 67 195 30.5 Obese
5 24 Younger than 30 Female 67 143 22.4 Normal
6 38 30 and Older Female 58 125 26.1 Overweight
7 25 Younger than 30 Female 64 138 23.7 Normal
8 24 Younger than 30 Male 69 140 20.7 Normal
9 48 30 and Older Male 65 158 26.3 Overweight
10 29 Younger than 30 Male 68 167 25.4 Overweight
# i 58 more rows

We already calculated the number of missing values, mean, median, min, and max for all of the
continuous variables. So, let’s go ahead and calculate the number and percent of observations
for each level of our categorical variables.

We know that we have 3 categorical variables (i.e., age_group, gender, and bmi_3cat), and
we know that we want to perform the same calculation on all of them. So, we decide to write
our own function. Following the workflow we discussed earlier, our next step is to make the
code work for one specific case:

study %>%
count(age_group) %>%
mutate(percent = n / sum(n) * 100)

# A tibble: 3 x 3
age_group n percent
<fct> <int> <dbl>

621



1 Younger than 30 56 82.4
2 30 and Older 11 16.2
3 <NA> 1 1.47

Great! Thanks to dplyr, we have the result we were looking for! The next step in the
workflow is to make our solution into a function. Let’s copy and paste our solution into a
function skeleton like we did before:

cat_stats <- function(var) {
study %>%

count(age_group) %>%
mutate(percent = n / sum(n) * 100)

}

cat_stats()

# A tibble: 3 x 3
age_group n percent
<fct> <int> <dbl>

1 Younger than 30 56 82.4
2 30 and Older 11 16.2
3 <NA> 1 1.47

So far, so good! Now, let’s replace age_group with var in the function body to generalize our
function:

cat_stats <- function(var) {
study %>%

count(var) %>%
mutate(percent = n / sum(n) * 100)

}

cat_stats(age_group)

Error in `count()`:
! Must group by variables found in `.data`.
x Column `var` is not found.

622



Unfortunately, this doesn’t work. As we stated in the introduction to this part of the book,
non-standard evaluation prevents us from using dplyr and other tidyverse packages inside
of our functions in the same way that we might use other functions. Fortunately, the fix for
this is pretty easy. All we need to do is embrace (i.e., wrap) the var variable with double
curly braces:

cat_stats <- function(var) {
study %>%

count({{ var }}) %>%
mutate(percent = n / sum(n) * 100)

}

cat_stats(age_group)

# A tibble: 3 x 3
age_group n percent
<fct> <int> <dbl>

1 Younger than 30 56 82.4
2 30 and Older 11 16.2
3 <NA> 1 1.47

Now, we can use our new function on the rest of our categorical variables:

cat_stats(gender)

# A tibble: 3 x 3
gender n percent
<fct> <int> <dbl>

1 Female 43 63.2
2 Male 24 35.3
3 <NA> 1 1.47

cat_stats(bmi_3cat)

# A tibble: 4 x 3
bmi_3cat n percent
<fct> <int> <dbl>

1 Normal 43 63.2
2 Overweight 16 23.5
3 Obese 5 7.35
4 <NA> 4 5.88

623



This is working beautifully! However, we should probably make one final adjustment to our
cat_stats() function. Let’s say that we had another data frame with categorical variable we
wanted to analyze:

other_study <- tibble(
id = 1:10,
age_group = c(rep("Younger", 9), "Older"),

) %>%
print()

# A tibble: 10 x 2
id age_group

<int> <chr>
1 1 Younger
2 2 Younger
3 3 Younger
4 4 Younger
5 5 Younger
6 6 Younger
7 7 Younger
8 8 Younger
9 9 Younger
10 10 Older

Now, let’s pass age_group to our cat_stats() function again:

cat_stats(age_group)

# A tibble: 3 x 3
age_group n percent
<fct> <int> <dbl>

1 Younger than 30 56 82.4
2 30 and Older 11 16.2
3 <NA> 1 1.47

Is that the result you expected? Hopefully not! That’s the same result we got from the
original study data. Have you figured out why this happened? Take another look at our
function definition:

624



cat_stats <- function(var) {
study %>%

count({{ var }}) %>%
mutate(percent = n / sum(n) * 100)

}

We have the study data frame hard coded into the first line of the function body. In the same
way we need a matching argument-variable pair to pass multiple different columns into our
function, we need a matching argument-variable pair to pass multiple different data frames
into our function. We start by adding an argument to accept the data frame:

cat_stats <- function(data, var) {
study %>%

count({{ var }}) %>%
mutate(percent = n / sum(n) * 100)

}

Again, we could name this argument almost anything, but data seems like a reasonable choice.
Then, we replace study with data in the function body to generalize our function:

cat_stats <- function(data, var) {
data %>%

count({{ var }}) %>%
mutate(percent = n / sum(n) * 100)

}

And now we can use our cat_stats() function on any data frame – including the other_study
data frame we created above:

cat_stats(other_study, age_group)

# A tibble: 2 x 3
age_group n percent
<chr> <int> <dbl>

1 Older 1 10
2 Younger 9 90

We can even use it with a pipe:

625



other_study %>%
cat_stats(age_group)

# A tibble: 2 x 3
age_group n percent
<chr> <int> <dbl>

1 Older 1 10
2 Younger 9 90

Some of you may be wondering why we didn’t have to wrap data with double curly braces in
the code above. Remember, we only have to use the curly braces with column names because of
non-standard evaluation. More specifically, because of one aspect of non-standard evaluation
called data masking. Data masking is what lets us refer to a column in a data frame without
using dollar sign or bracket notation. For example, age_group doesn’t exist in our global
environment as a standalone object:

age_group

Error: object 'age_group' not found

It only exists as a part of (i.e. a column in) the other_study object:

other_study$age_group

[1] "Younger" "Younger" "Younger" "Younger" "Younger" "Younger" "Younger"
[8] "Younger" "Younger" "Older"

But the data frames themselves are not data masked. They do exist as standalone objects in
our global environment:

other_study

# A tibble: 10 x 2
id age_group

<int> <chr>
1 1 Younger
2 2 Younger
3 3 Younger
4 4 Younger

626



5 5 Younger
6 6 Younger
7 7 Younger
8 8 Younger
9 9 Younger
10 10 Older

Therefore, there is no need to wrap them with double curly braces. Having said that, it doesn’t
appear as though doing so will hurt anything:

cat_stats <- function(data, var) {
{{data}} %>%

count({{ var }}) %>%
mutate(percent = n / sum(n) * 100)

}

cat_stats(other_study, age_group)

# A tibble: 2 x 3
age_group n percent
<chr> <int> <dbl>

1 Older 1 10
2 Younger 9 90

That pretty much wraps up this chapter on the basics of writing function to reduce unnecessary
repetition in your R code. If you’re feeling good about writing your own functions, great! If
you want to dig even deeper, take a look at the functions chapter of the Advanced R book.

If you’re still feeling a little apprehensive or confused, don’t feel bad. It takes most people
(myself included) a while to get comfortable with writing functions. Just remember, functions
can be complicated, but they don’t have to be. Even very simple functions can sometimes be
useful. So, start simple and get more complex as your skills and confidence grow.

If you find that you’ve written a function that is really useful, consider saving it for use again
in the future. One way is saving functions as R scripts in a folder on your computer that can
then be copied and pasted from the scripts into R programs as needed.

A much better way is using the source() function, which allows you to use use your saved
functions without having to manually copy and paste them.

An even better way is learning how to make your own packages that contain groups of related
functions and save them to your Github account. From there, you can use your functions on
any computer, and even share them with others. Finally, you can even publish your packages
on CRAN if you want to them with the broadest possible audience.

627

https://adv-r.hadley.nz/functions.html
http://r-pkgs.had.co.nz/
https://github.com/
https://cran.r-project.org/


35 Column-wise Operations in dplyr

Throughout the chapters in this book we have learned to do a really vast array of useful data
transformations and statistical analyses with the help of the dplyr package.

Figure 35.1: dplyr graphic

So far, however, we’ve always done these transformations and statistical analyses on one column
of our data frame at a time. There isn’t anything inherently “wrong” with this approach, but,
for reasons we’ve already discussed, there are often advantages to telling R what you want
to do one time, and then asking R to do that thing repeatedly across all, or a subset of, the
columns in your data frame. That is exactly what dplyr’s across() function allows us to
do.

There are so many ways we might want to use the across() function in our R programs. We
can’t begin to cover, or even imagine, them all. Instead, the goal of this chapter is just to
provide you with an overview of the across() function and show you some examples of using
it with filter(), mutate(), and summarise() to get you thinking about how you might want
to use it in your R programs.

Before we discuss further, let’s take a look at a quick example. The first thing we will need to
do is load dplyr.

628



library(dplyr, warn.conflicts = FALSE)

Then, we will simulate some data. In this case, we are creating a data frame that contains
three columns of 10 random numbers:

set.seed(123)
df_xyz <- tibble(
row = 1:10,
x = rnorm(10),
y = rnorm(10),
z = rnorm(10)

) %>%
print()

# A tibble: 10 x 4
row x y z

<int> <dbl> <dbl> <dbl>
1 1 -0.560 1.22 -1.07
2 2 -0.230 0.360 -0.218
3 3 1.56 0.401 -1.03
4 4 0.0705 0.111 -0.729
5 5 0.129 -0.556 -0.625
6 6 1.72 1.79 -1.69
7 7 0.461 0.498 0.838
8 8 -1.27 -1.97 0.153
9 9 -0.687 0.701 -1.14
10 10 -0.446 -0.473 1.25

Up to this point, if we wanted to find the mean of each column, we would probably have
written code like this:

df_xyz %>%
summarise(

x_mean = mean(x),
y_mean = mean(y),
z_mean = mean(y)

)

# A tibble: 1 x 3
x_mean y_mean z_mean
<dbl> <dbl> <dbl>

1 0.0746 0.209 0.209

629



With the help of the across() function, we can now get the mean of each column like this:

df_xyz %>%
summarise(

across(
.cols = c(x:z),
.fns = mean,
.names = "{col}_mean"

)
)

# A tibble: 1 x 3
x_mean y_mean z_mean
<dbl> <dbl> <dbl>

1 0.0746 0.209 -0.425

Now, you might ask why this is a better approach. Fair question.

In this case, using across() doesn’t actually reduce the number of lines of code we wrote. In
fact, we wrote two additional lines when we used the across() function. However, imagine if
we added 20 additional columns to our data frame. Using the first approach, we would have
to write 20 additional lines of code inside the summarise() function. Using the across()
approach, we wouldn’t have to add any additional code at all. We would simply update the
value we pass to the .cols argument.

Perhaps more importantly, did you notice that we “accidentally” forgot to replace y with z
when we copied and pasted z_mean = mean(y) in the code chunk for the first approach? If
not, go back and take a look. That mistake is fairly easy to catch and fix in this very simple
example. But, in real-world projects, mistakes like this are easy to make, and not always so
easy to catch. We are much less likely to make similar mistakes when we use across().

35.1 The across() function

The across() function is part of the dplyr package. We will always use across() inside of one
of the dplyr verbs we’ve been learning about. Specifically, mutate(), and summarise(). We
will not use across() outside of the dplyr verbs. Additionally, we will always use across()
within the context of a data frame (as opposed to a vector, matrix, or some other data
structure).

To view the help documentation for across(), you can copy and paste ?dplyr::across into
your R console. If you do, you will see that across() has four arguments. They are:

630



1�.cols. The value we pass to this argument should be columns of the data frame we want
to operate on. We can once again use tidy-select argument modifiers here. In the example
above, we used c(x:z) to tell R that we wanted to operate on columns x through z (inclusive).
If we had also wanted the mean of the row column for some reason, we could have used the
everything() tidy-select modifier to tell R that we wanted to operate on all of the columns
in the data frame.

2�.fns. This is where you tell across() what function, or functions, you want to apply to the
columns you selected in .cols. In the example above, we passed the mean function to the
.fns argument. Notice that we typed mean without the parentheses (i.e., mean()).

3�.... In this case, the ... argument is where we pass any additional arguments to the
function we passed to the .fns argument. For example, we passed the mean function to the
.fns argument above. In the data frame above, none of the columns had any missing values.
Let’s go ahead and add some missing values so that we can take a look at how ... works in
across().

df_xyz$x[2] <- NA_real_
df_xyz$y[4] <- NA_real_
df_xyz$z[6] <- NA_real_
df_xyz

# A tibble: 10 x 4
row x y z

<int> <dbl> <dbl> <dbl>
1 1 -0.560 1.22 -1.07
2 2 NA 0.360 -0.218
3 3 1.56 0.401 -1.03
4 4 0.0705 NA -0.729
5 5 0.129 -0.556 -0.625
6 6 1.72 1.79 NA
7 7 0.461 0.498 0.838
8 8 -1.27 -1.97 0.153
9 9 -0.687 0.701 -1.14
10 10 -0.446 -0.473 1.25

As we’ve already seen many times, R won’t drop the missing values and carry out a complete
case analysis by default:

df_xyz %>%
summarise(

x_mean = mean(x),

631



y_mean = mean(y),
z_mean = mean(y)

)

# A tibble: 1 x 3
x_mean y_mean z_mean
<dbl> <dbl> <dbl>

1 NA NA NA

Instead, we have to explicitly tell R to carry out a complete case analysis. We can do so by
filtering our rows with missing data (more on this later) or by changing the value of the mean()
function’s na.rm argument from FALSE (the default) to TRUE:

df_xyz %>%
summarise(

x_mean = mean(x, na.rm = TRUE),
y_mean = mean(y, na.rm = TRUE),
z_mean = mean(z, na.rm = TRUE)

)

# A tibble: 1 x 3
x_mean y_mean z_mean
<dbl> <dbl> <dbl>

1 0.108 0.220 -0.284

When we use across(), we will need to pass the na.rm = TRUE to the mean() function in
across()’s ... argument like this:

df_xyz %>%
summarise(

across(
.cols = everything(),
.fns = mean,
na.rm = TRUE, # Passing na.rm = TRUE to the ... argument
.names = "{col}_mean"

)
)

Warning: There was 1 warning in `summarise()`.
i In argument: `across(.cols = everything(), .fns = mean, na.rm = TRUE, .names

632



= "{col}_mean")`.
Caused by warning:
! The `...` argument of `across()` is deprecated as of dplyr 1.1.0.
Supply arguments directly to `.fns` through an anonymous function instead.

# Previously
across(a:b, mean, na.rm = TRUE)

# Now
across(a:b, \(x) mean(x, na.rm = TRUE))

# A tibble: 1 x 4
row_mean x_mean y_mean z_mean

<dbl> <dbl> <dbl> <dbl>
1 5.5 0.108 0.220 -0.284

Notice that we do not actually type out ... = or anything like that.

4�.names. You can use this argument to adjust the column names that will result from the
operation you pass to .fns. In the example above, we used the special {cols} keyword to use
each of the column names that were passed to the .cols argument as the first part of each of
the new columns’ names. Then, we asked R to add a literal underscore and the word “mean”
because these are all mean values. That resulted in the new column names you see above.
The default value for .names is just {cols}. So, if we hadn’t modified the value passed to the
.names argument, our results would have looked like this:

df_xyz %>%
summarise(

across(
.cols = everything(),
.fns = mean,
na.rm = TRUE

)
)

# A tibble: 1 x 4
row x y z

<dbl> <dbl> <dbl> <dbl>
1 5.5 0.108 0.220 -0.284

There is also a special {fn} keyword that we can use to pass the name of each of the functions
we used in .fns as part of the new column names. However, in order to get {fn} to work the

633



way we want it to, we have to pass a list of name-function pairs to the .fns argument. We’ll
explain further.

First, we will keep the code exactly as it was, but replace “mean” with “{fn}” in the .names
argument:

df_xyz %>%
summarise(

across(
.cols = everything(),
.fns = mean,
na.rm = TRUE,
.names = "{col}_{fn}"

)
)

# A tibble: 1 x 4
row_1 x_1 y_1 z_1
<dbl> <dbl> <dbl> <dbl>

1 5.5 0.108 0.220 -0.284

This is not the result we wanted. Because, we didn’t name the function that we passed to
.fns, across() essentially used “function number 1” as its name. In order to get the result
we want, we need to pass a list of name-function pairs to the .fns argument like this:

df_xyz %>%
summarise(

across(
.cols = everything(),
.fns = list(mean = mean),
na.rm = TRUE,
.names = "{col}_{fn}"

)
)

# A tibble: 1 x 4
row_mean x_mean y_mean z_mean

<dbl> <dbl> <dbl> <dbl>
1 5.5 0.108 0.220 -0.284

Although it may not be self-evident from just looking at the code above, the first mean in the
list(mean = mean) name-function pair is a name that we are choosing to be passed to the
new column names. Theoretically, we could have picked any name. For example:

634



df_xyz %>%
summarise(

across(
.cols = everything(),
.fns = list(r4epi = mean),
na.rm = TRUE,
.names = "{col}_{fn}"

)
)

# A tibble: 1 x 4
row_r4epi x_r4epi y_r4epi z_r4epi

<dbl> <dbl> <dbl> <dbl>
1 5.5 0.108 0.220 -0.284

The second mean in the list(mean = mean) name-function pair is the name of the actual
function we want to apply to the columns in .cols. This part of the name-function pair
must be the name of the function that we actually want to apply to the columns in .cols.
Otherwise, we will get an error:

df_xyz %>%
summarise(

across(
.cols = everything(),
.fns = list(mean = r4epi),
na.rm = TRUE,
.names = "{col}_{fn}"

)
)

Error in `summarise()`:
i In argument: `across(...)`.
Caused by error:
! object 'r4epi' not found

An additional advantage of passing a list of name-function pairs to the .fns argument is that
we can pass multiple functions at once. For example, let’s say that we want the minimum
and maximum value of each column in our data frame. Without across() we might do that
analysis like this:

635



df_xyz %>%
summarise(

x_min = min(x, na.rm = TRUE),
x_max = max(x, na.rm = TRUE),
y_min = min(y, na.rm = TRUE),
y_max = max(y, na.rm = TRUE),
z_min = min(z, na.rm = TRUE),
z_max = max(z, na.rm = TRUE)

)

# A tibble: 1 x 6
x_min x_max y_min y_max z_min z_max
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 -1.27 1.72 -1.97 1.79 -1.14 1.25

But, we can simply pass min and max as a list of name-function pairs if we use across():

df_xyz %>%
summarise(

across(
.cols = everything(),
.fns = list(min = min, max = max),
na.rm = TRUE,
.names = "{col}_{fn}"

)
)

# A tibble: 1 x 8
row_min row_max x_min x_max y_min y_max z_min z_max

<int> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 1 10 -1.27 1.72 -1.97 1.79 -1.14 1.25

How great is that?!?

So, we’ve seen how to pass an individual function to the .fns argument and we’ve seen how
to pass a list containing multiple functions to the .fns argument. There is actually a third
syntax for passing functions to the .fns argument. The across() documentation calls it “a
purrr-style lambda”. This can be a little bit confusing, so I’m going to show you an example,
and then walk through it step by step.

636



df_xyz %>%
summarise(

across(
.cols = everything(),
.fns = ~ mean(.x, na.rm = TRUE),
.names = "{col}_mean"

)
)

# A tibble: 1 x 4
row_mean x_mean y_mean z_mean

<dbl> <dbl> <dbl> <dbl>
1 5.5 0.108 0.220 -0.284

The purrr-style lambda always begins with the tilde symbol (~). Then we type out a function
call behind the tilde symbol. We place the special .x symbol inside the function call where we
would normally want to type the name of the column we want the function to operate on. The
across() function will then substitute each column name we passed to the .cols argument
for .x sequentially. In the example above, there isn’t really any good reason to use this syntax.
However, this syntax can be useful at times. We will see some examples below.

35.2 Across with mutate

We’ve already seen a number of examples of manipulating columns of our data frames using
the mutate() function. In this section, we are going to take a look at two examples where
using the across() function inside mutate() will allow us to apply the same manipulation to
multiple columns in our data frame at once.

Let’s go ahead and simulate the same demographics data frame we simulated for the recoding
missing section of the conditional operations chapter. Let’s also add two new columns: a
four-category education column and a six-category income column. For all columns except id
and age, a value of 7 represents “Don’t know” and a value of 9 represents “refused.”

set.seed(123)
demographics <- tibble(
id = 1:10,
age = c(sample(1:30, 9, TRUE), NA),
race = c(1, 2, 1, 4, 7, 1, 2, 9, 1, 3),
hispanic = c(7, 0, 1, 0, 1, 0, 1, 9, 0, 1),
edu_4cat = c(4, 2, 9, 1, 2, 3, 4, 9, 3, 3),

637

../conditional_operations/conditional_operations.qmd
../conditional_operations/conditional_operations.qmd


inc_6cat = c(1, 4, 1, 1, 5, 3, 2, 2, 7, 9)
) %>%
print()

# A tibble: 10 x 6
id age race hispanic edu_4cat inc_6cat

<int> <int> <dbl> <dbl> <dbl> <dbl>
1 1 15 1 7 4 1
2 2 19 2 0 2 4
3 3 14 1 1 9 1
4 4 3 4 0 1 1
5 5 10 7 1 2 5
6 6 18 1 0 3 3
7 7 22 2 1 4 2
8 8 11 9 9 9 2
9 9 5 1 0 3 7
10 10 NA 3 1 3 9

When working with data like this, it’s common to want to recode all the 7’s and 9’s to NA’s.
We saw how to do that one column at a time already:

demographics %>%
mutate(

race = if_else(race == 7 | race == 9, NA_real_, race),
hispanic = if_else(race == 7 | hispanic == 9, NA_real_, hispanic),
edu_4cat = if_else(edu_4cat == 7 | edu_4cat == 9, NA_real_, edu_4cat)

)

# A tibble: 10 x 6
id age race hispanic edu_4cat inc_6cat

<int> <int> <dbl> <dbl> <dbl> <dbl>
1 1 15 1 7 4 1
2 2 19 2 0 2 4
3 3 14 1 1 NA 1
4 4 3 4 0 1 1
5 5 10 NA NA 2 5
6 6 18 1 0 3 3
7 7 22 2 1 4 2
8 8 11 NA NA NA 2
9 9 5 1 0 3 7
10 10 NA 3 1 3 9

638



�In the code chunk above, we have essentially the same code copied more than twice. That’s a
red flag that we should be thinking about removing unnecessary repetition from our code.

Also, did you notice that we forgot to replace race with hispanic in hispanic =
if_else(race == 7 | hispanic == 9, NA_real_, hispanic)? This time, we didn’t write
“forgot” in quotes because we really did forget and only noticed it later. In this case, the error
caused a value of 1 to be recoded to NA in the hispanic column. These typos we’ve been
talking about really do happen – even to me!

Here’s how we can use across() in this situation:

demographics %>%
mutate(

across(
.cols = c(-id, -age),
.fns = ~ if_else(.x == 7 | .x == 9, NA_real_, .x)

)
)

# A tibble: 10 x 6
id age race hispanic edu_4cat inc_6cat

<int> <int> <dbl> <dbl> <dbl> <dbl>
1 1 15 1 NA 4 1
2 2 19 2 0 2 4
3 3 14 1 1 NA 1
4 4 3 4 0 1 1
5 5 10 NA 1 2 5
6 6 18 1 0 3 3
7 7 22 2 1 4 2
8 8 11 NA NA NA 2
9 9 5 1 0 3 NA
10 10 NA 3 1 3 NA

�Here’s what we did above:

• We used a purrr-style lambda to replace 7’s and 9’s in all columns in our data frame,
except id and age, with NA.

• Remember, the special .x symbol is just shorthand for each column passed to the .cols
argument.

As another example, let’s say that we are once again working with data from a drug trial that
includes a list of side effects for each person:

639



set.seed(123)
drug_trial <- tibble(
id = 1:10,
se_headache = sample(0:1, 10, TRUE),
se_diarrhea = sample(0:1, 10, TRUE),
se_dry_mouth = sample(0:1, 10, TRUE),
se_nausea = sample(0:1, 10, TRUE)

) %>%
print()

# A tibble: 10 x 5
id se_headache se_diarrhea se_dry_mouth se_nausea

<int> <int> <int> <int> <int>
1 1 0 1 0 0
2 2 0 1 1 1
3 3 0 1 0 0
4 4 1 0 0 1
5 5 0 1 0 1
6 6 1 0 0 0
7 7 1 1 1 0
8 8 1 0 1 0
9 9 0 0 0 0
10 10 0 0 1 1

Now, we want to create a factor version of each of the side effect columns. We’ve already
learned how to do so one column at a time:

drug_trial %>%
mutate(

se_headache_f = factor(se_headache, 0:1, c("No", "Yes")),
se_diarrhea_f = factor(se_diarrhea, 0:1, c("No", "Yes")),
se_dry_mouth_f = factor(se_dry_mouth, 0:1, c("No", "Yes"))

)

# A tibble: 10 x 8
id se_headache se_diarrhea se_dry_mouth se_nausea se_headache_f

<int> <int> <int> <int> <int> <fct>
1 1 0 1 0 0 No
2 2 0 1 1 1 No
3 3 0 1 0 0 No
4 4 1 0 0 1 Yes

640



5 5 0 1 0 1 No
6 6 1 0 0 0 Yes
7 7 1 1 1 0 Yes
8 8 1 0 1 0 Yes
9 9 0 0 0 0 No
10 10 0 0 1 1 No
# i 2 more variables: se_diarrhea_f <fct>, se_dry_mouth_f <fct>

�Once again, we have essentially the same code copied more than twice. That’s a red flag that
we should be thinking about removing unnecessary repetition from our code. Here’s how we
can use across() to do so:

drug_trial %>%
mutate(

across(
.cols = starts_with("se"),
.fns = ~ factor(.x, 0:1, c("No", "Yes")),
.names = "{col}_f"

)
)

# A tibble: 10 x 9
id se_headache se_diarrhea se_dry_mouth se_nausea se_headache_f

<int> <int> <int> <int> <int> <fct>
1 1 0 1 0 0 No
2 2 0 1 1 1 No
3 3 0 1 0 0 No
4 4 1 0 0 1 Yes
5 5 0 1 0 1 No
6 6 1 0 0 0 Yes
7 7 1 1 1 0 Yes
8 8 1 0 1 0 Yes
9 9 0 0 0 0 No
10 10 0 0 1 1 No
# i 3 more variables: se_diarrhea_f <fct>, se_dry_mouth_f <fct>,
# se_nausea_f <fct>

�Here’s what we did above:

• We used a purrr-style lambda to create a factor version of all the side effect columns in
our data frame.

• We used the .names argument to add an “_f” to the end of the new column names.

641



35.3 Across with summarise

Let’s return to the ehr data frame we used in the chapter on working with character strings
for our first example of using across() inside of summarise.

You may click here to download this file to your computer.

# We will need here, readr and stringr in the examples below
library(readr)
library(stringr)
library(here)

# Read in the data
ehr <- read_rds("ehr.Rds")

For this example, the only column we will concern ourselves with is the symptoms column:

symptoms <- ehr %>%
select(symptoms) %>%
print()

# A tibble: 15 x 1
symptoms
<chr>

1 "\"Pain\", \"Headache\", \"Nausea\""
2 "Pain"
3 "Pain"
4 "\"Nausea\", \"Headache\""
5 "\"Pain\", \"Headache\""
6 "\"Nausea\", \"Headache\""
7 "Pain"
8 <NA>
9 "Pain"
10 <NA>
11 "\"Nausea\", \"Headache\""
12 "\"Headache\", \"Pain\", \"Nausea\""
13 "Headache"
14 "\"Headache\", \"Pain\", \"Nausea\""
15 <NA>

You may recall that we created dummy variables for each symptom like this:

642

https://github.com/brad-cannell/r4epi/blob/master/data/ehr.Rds


symptoms <- symptoms %>%
mutate(

pain = str_detect(symptoms, "Pain"),
headache = str_detect(symptoms, "Headache"),
nausea = str_detect(symptoms, "Nausea")

) %>%
print()

# A tibble: 15 x 4
symptoms pain headache nausea
<chr> <lgl> <lgl> <lgl>

1 "\"Pain\", \"Headache\", \"Nausea\"" TRUE TRUE TRUE
2 "Pain" TRUE FALSE FALSE
3 "Pain" TRUE FALSE FALSE
4 "\"Nausea\", \"Headache\"" FALSE TRUE TRUE
5 "\"Pain\", \"Headache\"" TRUE TRUE FALSE
6 "\"Nausea\", \"Headache\"" FALSE TRUE TRUE
7 "Pain" TRUE FALSE FALSE
8 <NA> NA NA NA
9 "Pain" TRUE FALSE FALSE
10 <NA> NA NA NA
11 "\"Nausea\", \"Headache\"" FALSE TRUE TRUE
12 "\"Headache\", \"Pain\", \"Nausea\"" TRUE TRUE TRUE
13 "Headache" FALSE TRUE FALSE
14 "\"Headache\", \"Pain\", \"Nausea\"" TRUE TRUE TRUE
15 <NA> NA NA NA

Note

Some of you may have noticed that we repeated ourselves more than twice in the code
chunk above and thought about using across() to remove it. Unfortunately, across()
won’t solve our problem in this situation. We will need some of the tools that we learn
about in later chapters if we want to remove this repetition.

And finally, we used the table() function to get a count of how many people reported having
a headache:

table(symptoms$headache)

FALSE TRUE
4 8

643



This is where the example stopped in the chapter on working with character strings. However,
what if we wanted to know how many people reported the other symptoms as well? Well, we
could repeatedly call the table() function:

table(symptoms$pain)

FALSE TRUE
4 8

table(symptoms$nausea)

FALSE TRUE
6 6

But, that would cause us to copy and paste repeatedly. Additionally, wouldn’t it be nice to
view these counts in a way that makes them easier to compare? One solution would be to use
summarise() like this:

symptoms %>%
summarise(

had_headache = sum(headache, na.rm = TRUE),
had_pain = sum(pain, na.rm = TRUE),
had_nausea = sum(nausea, na.rm = TRUE)

)

# A tibble: 1 x 3
had_headache had_pain had_nausea

<int> <int> <int>
1 8 8 6

This works, but we can do better with across():

symptoms %>%
summarise(

across(
.cols = c(headache, pain, nausea),
.fns = ~ sum(.x, na.rm = TRUE)

)
)

644



# A tibble: 1 x 3
headache pain nausea

<int> <int> <int>
1 8 8 6

Great! But, wouldn’t it be nice to know the proportion of people with each symptom as
well? You may recall that R treats TRUE and FALSE as 1 and 0 when used in a mathematical
operation. Additionally, you may already be aware that the mean of a set of 1’s and 0’s is
equal to the proportion of 1’s in the set. For example, there are three ones and three zeros
in the set (1, 1, 1, 0, 0, 0). The proportion of 1’s in the set is 3 out of 6, which is 0.5.
Equivalently, the mean value of the set is (1 + 1 + 1 + 0 + 0 + 0) / 6, which equals 3 /
6, which is 0.5. So, when we have dummy variables like headache, pain, and nausea above,
passing them to the mean() function returns the proportion of TRUE values. In this case, the
proportion of people who had each symptom. We know we can do that calculation like this:

symptoms %>%
summarise(

had_headache = mean(headache, na.rm = TRUE),
had_pain = mean(pain, na.rm = TRUE),
had_nausea = mean(nausea, na.rm = TRUE)

)

# A tibble: 1 x 3
had_headache had_pain had_nausea

<dbl> <dbl> <dbl>
1 0.667 0.667 0.5

As before, we can do better with the across() function like this:

symptoms %>%
summarise(

across(
.cols = c(pain, headache, nausea),
.fns = ~ mean(.x, na.rm = TRUE)

)
)

# A tibble: 1 x 3
pain headache nausea
<dbl> <dbl> <dbl>

1 0.667 0.667 0.5

645



Now, at this point, we might think, “wouldn’t it be nice to see the count and the proportion
in the same result?” Well, we can do that by supplying our purrr-style lambdas as functions
in a list of name-function pairs like this:

symptom_summary <- symptoms %>%
summarise(

across(
.cols = c(pain, headache, nausea),
.fns = list(
count = ~ sum(.x, na.rm = TRUE),
prop = ~ mean(.x, na.rm = TRUE)

)
)

) %>%
print()

# A tibble: 1 x 6
pain_count pain_prop headache_count headache_prop nausea_count nausea_prop

<int> <dbl> <int> <dbl> <int> <dbl>
1 8 0.667 8 0.667 6 0.5

In this case, it’s probably fine to stop here. But, what if we had 20 or 30 symptoms that we
were analyzing? It would be really difficult to read and compare them arranged horizontally
like this, wouldn’t it?

Do you recall us discussing restructuring our results in the chapter on restructuring data
frames? This is a circumstance where we might want to use pivot_longer() to make our
results easier to read and interpret:

symptom_summary %>%
tidyr::pivot_longer(

cols = everything(),
names_to = c("symptom", ".value"),
names_sep = "_"

)

# A tibble: 3 x 3
symptom count prop
<chr> <int> <dbl>

1 pain 8 0.667
2 headache 8 0.667
3 nausea 6 0.5

646

../restructuring_data_frames/restructuring_data_frames.qmd
../restructuring_data_frames/restructuring_data_frames.qmd


There! Isn’t that result much easier to read?

For our final example of this section, let’s return the first example from the writing functions
chapter. We started with some simulated study data:

study <- tibble(
age = c(32, 30, 32, 29, 24, 38, 25, 24, 48, 29, 22, 29, 24, 28, 24, 25,

25, 22, 25, 24, 25, 24, 23, 24, 31, 24, 29, 24, 22, 23, 26, 23,
24, 25, 24, 33, 27, 25, 26, 26, 26, 26, 26, 27, 24, 43, 25, 24,
27, 28, 29, 24, 26, 28, 25, 24, 26, 24, 26, 31, 24, 26, 31, 34,
26, 25, 27, NA),

age_group = c(2, 2, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1,
1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2,
2, 1, 1, 1, NA),

gender = c(2, 1, 1, 2, 1, 1, 1, 2, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1,
1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1,
1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 1, 1, 2, 1, 2, 1,
1, 1, 2, 1, NA),

ht_in = c(70, 63, 62, 67, 67, 58, 64, 69, 65, 68, 63, 68, 69, 66, 67, 65,
64, 75, 67, 63, 60, 67, 64, 73, 62, 69, 67, 62, 68, 66, 66, 62,
64, 68, NA, 68, 70, 68, 68, 66, 71, 61, 62, 64, 64, 63, 67, 66,
69, 76, NA, 63, 64, 65, 65, 71, 66, 65, 65, 71, 64, 71, 60, 62,
61, 69, 66, NA),

wt_lbs = c(216, 106, 145, 195, 143, 125, 138, 140, 158, 167, 145, 297, 146,
125, 111, 125, 130, 182, 170, 121, 98, 150, 132, 250, 137, 124,
186, 148, 134, 155, 122, 142, 110, 132, 188, 176, 188, 166, 136,
147, 178, 125, 102, 140, 139, 60, 147, 147, 141, 232, 186, 212,
110, 110, 115, 154, 140, 150, 130, NA, 171, 156, 92, 122, 102,
163, 141, NA),

bmi = c(30.99, 18.78, 26.52, 30.54, 22.39, 26.12, 23.69, 20.67, 26.29,
25.39, 25.68, 45.15, 21.56, 20.17, 17.38, 20.8, 22.31, 22.75,
26.62, 21.43, 19.14, 23.49, 22.66, 32.98, 25.05, 18.31, 29.13,
27.07, 20.37, 25.01, 19.69, 25.97, 18.88, 20.07, NA, 26.76,
26.97, 25.24, 20.68, 23.72, 24.82, 23.62, 18.65, 24.03, 23.86,
10.63, 23.02, 23.72, 20.82, 28.24, NA, 37.55, 18.88, 18.3,
19.13, 21.48, 22.59, 24.96, 21.63, NA, 29.35, 21.76, 17.97,
22.31, 19.27, 24.07, 22.76, NA),

bmi_3cat = c(3, 1, 2, 3, 1, 2, 1, 1, 2, 2, 2, 3, 1, 1, 1, 1, 1, 1, 2, 1, 1,
1, 1, 3, 2, 1, 2, 2, 1, 2, 1, 2, 1, 1, NA, 2, 2, 2, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 2, NA, 3, 1, 1, 1, 1, 1, 1, 1, NA, 2, 1,
1, 1, 1, 1, 1, NA)

) %>%

647

../writing_functions/writing_functions.qmd
../writing_functions/writing_functions.qmd


mutate(
age_group = factor(age_group, labels = c("Younger than 30", "30 and Older")),
gender = factor(gender, labels = c("Female", "Male")),
bmi_3cat = factor(bmi_3cat, labels = c("Normal", "Overweight", "Obese"))

) %>%
print()

# A tibble: 68 x 7
age age_group gender ht_in wt_lbs bmi bmi_3cat

<dbl> <fct> <fct> <dbl> <dbl> <dbl> <fct>
1 32 30 and Older Male 70 216 31.0 Obese
2 30 30 and Older Female 63 106 18.8 Normal
3 32 30 and Older Female 62 145 26.5 Overweight
4 29 Younger than 30 Male 67 195 30.5 Obese
5 24 Younger than 30 Female 67 143 22.4 Normal
6 38 30 and Older Female 58 125 26.1 Overweight
7 25 Younger than 30 Female 64 138 23.7 Normal
8 24 Younger than 30 Male 69 140 20.7 Normal
9 48 30 and Older Male 65 158 26.3 Overweight
10 29 Younger than 30 Male 68 167 25.4 Overweight
# i 58 more rows

And wrote our own function to calculate the number of missing values, mean, median, min,
and max for all of the continuous variables:

continuous_stats <- function(var) {
study %>%

summarise(
n_miss = sum(is.na({{ var }})),
mean = mean({{ var }}, na.rm = TRUE),
median = median({{ var }}, na.rm = TRUE),
min = min({{ var }}, na.rm = TRUE),
max = max({{ var }}, na.rm = TRUE)

)
}

We then used that function to calculate our statistics of interest for each continuous variable:

continuous_stats(age)

648



# A tibble: 1 x 5
n_miss mean median min max
<int> <dbl> <dbl> <dbl> <dbl>

1 1 26.9 26 22 48

continuous_stats(ht_in)

# A tibble: 1 x 5
n_miss mean median min max
<int> <dbl> <dbl> <dbl> <dbl>

1 3 66.0 66 58 76

continuous_stats(wt_lbs)

# A tibble: 1 x 5
n_miss mean median min max
<int> <dbl> <dbl> <dbl> <dbl>

1 2 148. 142. 60 297

continuous_stats(bmi)

# A tibble: 1 x 5
n_miss mean median min max
<int> <dbl> <dbl> <dbl> <dbl>

1 4 23.6 22.9 10.6 45.2

This is definitely an improvement over all the copying and pasting we were doing before we
wrote our own function. However, there is still some unnecessary repetition above. One way
we can remove this repetition is to use across() like this:

summary_stats <- study %>%
summarise(

across(
.cols = c(age, ht_in, wt_lbs, bmi),
.fns = list(
n_miss = ~ sum(is.na(.x)),
mean = ~ mean(.x, na.rm = TRUE),
median = ~ median(.x, na.rm = TRUE),
min = ~ min(.x, na.rm = TRUE),

649



max = ~ max(.x, na.rm = TRUE)
)

)
) %>%
print()

# A tibble: 1 x 20
age_n_miss age_mean age_median age_min age_max ht_in_n_miss ht_in_mean

<int> <dbl> <dbl> <dbl> <dbl> <int> <dbl>
1 1 26.9 26 22 48 3 66.0
# i 13 more variables: ht_in_median <dbl>, ht_in_min <dbl>, ht_in_max <dbl>,
# wt_lbs_n_miss <int>, wt_lbs_mean <dbl>, wt_lbs_median <dbl>,
# wt_lbs_min <dbl>, wt_lbs_max <dbl>, bmi_n_miss <int>, bmi_mean <dbl>,
# bmi_median <dbl>, bmi_min <dbl>, bmi_max <dbl>

This method works, but it has the same problem that our symptom summaries had above.
Our results are hard to read and interpret because they are arranged horizontally. We can
once again pivot this data longer, but it won’t be quite as easy as it was before. Our first
attempt might look like this:

summary_stats %>%
tidyr::pivot_longer(

cols = everything(),
names_to = c("characteristic", ".value"),
names_sep = "_"

)

Warning: Expected 2 pieces. Additional pieces discarded in 12 rows [1, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16].

# A tibble: 12 x 8
characteristic n mean median min max `in` lbs
<chr> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 age 1 26.9 26 22 48 NA NA
2 ht NA NA NA NA NA 3 NA
3 ht NA NA NA NA NA 66.0 NA
4 ht NA NA NA NA NA 66 NA
5 ht NA NA NA NA NA 58 NA
6 ht NA NA NA NA NA 76 NA
7 wt NA NA NA NA NA NA 2

650



8 wt NA NA NA NA NA NA 148.
9 wt NA NA NA NA NA NA 142.
10 wt NA NA NA NA NA NA 60
11 wt NA NA NA NA NA NA 297
12 bmi 4 23.6 22.9 10.6 45.2 NA NA

What do you think the problem is here?

Well, we passed an underscore to the names_sep argument. This tells pivot_longer() that
that character string on the left side of the underscore should make up the values of the new
characteristic column and each unique character string on the right side of the underscore
should be used to create a new column name. In the symptoms data, this worked fine because
all of the column names followed this pattern (e.g., pain_count and pain_prop). But, do the
column names in summary_stats always follow this pattern? What about age_n_miss and
ht_in_n_miss? All the extra underscores in the column names makes this pattern ineffec-
tive.

There are probably many ways we could address this problem. We think the most straightfor-
ward way is probably to go back to the code we used to create summary_stats and use the
.names argument to separate the column name and statistic name with a character other than
an underscore. Maybe a hyphen instead:

summary_stats <- study %>%
summarise(

across(
.cols = c(age, ht_in, wt_lbs, bmi),
.fns = list(
n_miss = ~ sum(is.na(.x)),
mean = ~ mean(.x, na.rm = TRUE),
median = ~ median(.x, na.rm = TRUE),
min = ~ min(.x, na.rm = TRUE),
max = ~ max(.x, na.rm = TRUE)

),
.names = "{col}-{fn}" # This is the new part of the code

)
) %>%
print()

# A tibble: 1 x 20
`age-n_miss` `age-mean` `age-median` `age-min` `age-max` `ht_in-n_miss`

<int> <dbl> <dbl> <dbl> <dbl> <int>
1 1 26.9 26 22 48 3
# i 14 more variables: `ht_in-mean` <dbl>, `ht_in-median` <dbl>,

651



# `ht_in-min` <dbl>, `ht_in-max` <dbl>, `wt_lbs-n_miss` <int>,
# `wt_lbs-mean` <dbl>, `wt_lbs-median` <dbl>, `wt_lbs-min` <dbl>,
# `wt_lbs-max` <dbl>, `bmi-n_miss` <int>, `bmi-mean` <dbl>,
# `bmi-median` <dbl>, `bmi-min` <dbl>, `bmi-max` <dbl>

Now, we can simply pass a hyphen to the names_sep argument to pivot_longer():

summary_stats %>%
tidyr::pivot_longer(

cols = everything(),
names_to = c("characteristic", ".value"),
names_sep = "-"

)

# A tibble: 4 x 6
characteristic n_miss mean median min max
<chr> <int> <dbl> <dbl> <dbl> <dbl>

1 age 1 26.9 26 22 48
2 ht_in 3 66.0 66 58 76
3 wt_lbs 2 148. 142. 60 297
4 bmi 4 23.6 22.9 10.6 45.2

Look at how much easier those results are to read!

rm(study, summary_stats, continuous_stats)

35.4 Across with filter

We’ve already discussed complete case analysis multiple times in this book. That is, including
only the rows from our data frame that don’t have any missing values in our analysis. Addi-
tionally, we’ve already seen how we can use the filter() function to remove the rows of a
single column where the data are missing. For example:

df_xyz %>%
filter(!is.na(x))

# A tibble: 9 x 4
row x y z

<int> <dbl> <dbl> <dbl>

652



1 1 -0.560 1.22 -1.07
2 3 1.56 0.401 -1.03
3 4 0.0705 NA -0.729
4 5 0.129 -0.556 -0.625
5 6 1.72 1.79 NA
6 7 0.461 0.498 0.838
7 8 -1.27 -1.97 0.153
8 9 -0.687 0.701 -1.14
9 10 -0.446 -0.473 1.25

Notice that row 2 – the row that had a missing value for x – is no longer in the data frame,
and we can now easily calculate the mean value of x.

df_xyz %>%
filter(!is.na(x)) %>%
summarise(mean = mean(x))

# A tibble: 1 x 1
mean
<dbl>

1 0.108

However, we want to remove the rows that have a missing value in any column – not just x.
We could get this result using multiple sequential filter() functions like this:

df_xyz %>%
filter(!is.na(x)) %>%
filter(!is.na(y)) %>%
filter(!is.na(z))

# A tibble: 7 x 4
row x y z

<int> <dbl> <dbl> <dbl>
1 1 -0.560 1.22 -1.07
2 3 1.56 0.401 -1.03
3 5 0.129 -0.556 -0.625
4 7 0.461 0.498 0.838
5 8 -1.27 -1.97 0.153
6 9 -0.687 0.701 -1.14
7 10 -0.446 -0.473 1.25

653



As you can see, rows 2, 4, and 6 – the rows with a missing value for x, y, and z – were
dropped.

�Of course, in the code chunk above, we have essentially the same code copied more than twice.
That’s a red flag that we should be thinking about removing unnecessary repetition from our
code.

At this point in the book, our first thought might be to use the across() function, inside the
filter() function, to remove all of the rows rows with missing values from our data frame.
However, as of dplyr version 1.0.4, using the across() function inside of filter() is
deprecated. That means we shouldn’t use it anymore. Instead, we should use the if_any()
or if_all() functions, which take the exact same arguments as across(). In the code chunk
below, we will show you how to solve this problem, then we will dissect the solution below.

df_xyz %>%
filter(

if_all(
.cols = c(x:z),
.fns = ~ !is.na(.x)

)
)

# A tibble: 7 x 4
row x y z

<int> <dbl> <dbl> <dbl>
1 1 -0.560 1.22 -1.07
2 3 1.56 0.401 -1.03
3 5 0.129 -0.556 -0.625
4 7 0.461 0.498 0.838
5 8 -1.27 -1.97 0.153
6 9 -0.687 0.701 -1.14
7 10 -0.446 -0.473 1.25

�Here’s what we did above:

• You can type ?dplyr::if_any or ?dplyr::if_all into your R console to view the help
documentation for this function and follow along with the explanation below.

• We used the if_all() function inside of the filter() function to keep only the rows
in our data frame that had nonmissing values for all of the columns x, y, and z.

• We passed the value c(x:z) to the .cols argument. This told R to apply the function
passed to the .fns argument to the columns x through z inclusive.

654



• We used a purrr-style lambda to test whether or not each value of each of the columns
passed to .cols is NOT missing.

• Remember, the special .x symbol is just shorthand for each column passed to the .cols
argument.

So, how does this work? Well, first let’s remember that the is.na() function returns TRUE
when the value of the vector passed to it is missing and FALSE when it is not missing. For
example:

is.na(df_xyz$x)

[1] FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

We can then use the ! operator to “flip” those results. In other words, to return TRUE when
the value of the vector passed to it is not missing and FALSE when it is missing. For example:

!is.na(df_xyz$x)

[1] TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

The filter() function] then returns the rows from the data frame where the values returned by
!is.na() are TRUE and drops the rows where they are FALSE. For example, we can copy and
paste the TRUE/FALSE values above to keep only the rows with nonmissing values for x:

df_xyz %>%
filter(c(TRUE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE))

# A tibble: 9 x 4
row x y z

<int> <dbl> <dbl> <dbl>
1 1 -0.560 1.22 -1.07
2 3 1.56 0.401 -1.03
3 4 0.0705 NA -0.729
4 5 0.129 -0.556 -0.625
5 6 1.72 1.79 NA
6 7 0.461 0.498 0.838
7 8 -1.27 -1.97 0.153
8 9 -0.687 0.701 -1.14
9 10 -0.446 -0.473 1.25

655



Now, let’s repeat this process for the columns y and z as well.

!is.na(df_xyz$y)

[1] TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE

!is.na(df_xyz$z)

[1] TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE

Next, let’s stack these results next to each other to make them even easier to view.

not_missing <- tibble(
row = 1:10,
x = !is.na(df_xyz$x),
y = !is.na(df_xyz$y),
z = !is.na(df_xyz$z)

) %>%
print()

# A tibble: 10 x 4
row x y z

<int> <lgl> <lgl> <lgl>
1 1 TRUE TRUE TRUE
2 2 FALSE TRUE TRUE
3 3 TRUE TRUE TRUE
4 4 TRUE FALSE TRUE
5 5 TRUE TRUE TRUE
6 6 TRUE TRUE FALSE
7 7 TRUE TRUE TRUE
8 8 TRUE TRUE TRUE
9 9 TRUE TRUE TRUE
10 10 TRUE TRUE TRUE

�Here’s what we did above:

• We created a data frame that contains the value TRUE in each position where df_xyz has
a nonmissing value and FALSE in each position where df_xyz has a missing value. We
wouldn’t typically create this for our data analysis. We just created it here for teaching
purposes.

656



You can think of the data frame of TRUE and FALSE values above as an intermediate product
that if_any() and if_all() uses “under the hood” to decide which rows to keep. We think
using this data frame as a conceptual model makes it a little easier to understand how if_any()
and if_all() differ.

if_any() will keep the rows where any value of x, y, or z are TRUE. In this case, there is at
least one TRUE value in every row. Therefore, we would expect if_any() to return all rows in
our data frame. And, that’s exactly what happens.

df_xyz %>%
filter(

if_any(
.cols = c(x:z),
.fns = ~ !is.na(.x)

)
)

# A tibble: 10 x 4
row x y z

<int> <dbl> <dbl> <dbl>
1 1 -0.560 1.22 -1.07
2 2 NA 0.360 -0.218
3 3 1.56 0.401 -1.03
4 4 0.0705 NA -0.729
5 5 0.129 -0.556 -0.625
6 6 1.72 1.79 NA
7 7 0.461 0.498 0.838
8 8 -1.27 -1.97 0.153
9 9 -0.687 0.701 -1.14
10 10 -0.446 -0.473 1.25

On the other hand, if_all() will the keep the rows where all value of x, y, and z are TRUE.
In this case, there is at least one FALSE value in rows 2, 4, and 6. Therefore, we would expect
if_all() to return all rows in our data frame except rows 2, 4, and 6. That’s exactly what
happens, and it’s exaclty the result we want.

df_xyz %>%
filter(

if_all(
.cols = c(x:z),
.fns = ~ !is.na(.x)

)
)

657



# A tibble: 7 x 4
row x y z

<int> <dbl> <dbl> <dbl>
1 1 -0.560 1.22 -1.07
2 3 1.56 0.401 -1.03
3 5 0.129 -0.556 -0.625
4 7 0.461 0.498 0.838
5 8 -1.27 -1.97 0.153
6 9 -0.687 0.701 -1.14
7 10 -0.446 -0.473 1.25

Because this is a small, simple example, using if_all() doesn’t actually reduce the number
of lines of code we wrote. But again, try to imagine if we added 20 additional columns to our
data frame. We would only need to update the value we pass to the .cols argument. This
makes our code more concise, easier to maintain, and less error-prone.

35.5 Summary

We are big fans of using across(), if_any(), and if_all() in conjunction with the dplyr
verbs. They allows us to remove a lot of the unnecessary repetition from our code in a way
that integrates pretty seamlessly with the tools we are already using. Perhaps you will see
value in using these functions as well. In the next chapter, we will learn about using for loops
to remove unnecessary repetition from our code.

658



36 Writing For Loops

In this third chapter on repeated operations, we are going to discuss writing for loops.

Figure 36.1: For loops graphic

In other documents you read, you may see for loops referred to as iterative processing, iterative
operations, iteration, or just loops. Regardless of what you call them, for loops are not unique
to R. Many if not all statistical software applications allow users to write for loops; although,
the exact words and symbols used to construct them may differ slightly from one program to
another.

Let’s take a look at an example. After seeing a working example, we will take the code apart
iteratively (do you see what we did there? �) to figure out how it works.

We’ll start by simulating some data. This is the same data we simulated at the beginning of
the chapter on column-wise operations in dplyr. It’s a data frame that contains three columns
of 10 random numbers:

659



library(dplyr)

set.seed(123)
df_xyz <- tibble(
x = rnorm(10),
y = rnorm(10),
z = rnorm(10)

) %>%
print()

# A tibble: 10 x 3
x y z

<dbl> <dbl> <dbl>
1 -0.560 1.22 -1.07
2 -0.230 0.360 -0.218
3 1.56 0.401 -1.03
4 0.0705 0.111 -0.729
5 0.129 -0.556 -0.625
6 1.72 1.79 -1.69
7 0.461 0.498 0.838
8 -1.27 -1.97 0.153
9 -0.687 0.701 -1.14
10 -0.446 -0.473 1.25

As we previously discussed, if we wanted to find the mean of each column before learning
about repeated operations, we would probably have written code like this:

df_xyz %>%
summarise(

x_mean = mean(x),
y_mean = mean(y),
z_mean = mean(y)

)

# A tibble: 1 x 3
x_mean y_mean z_mean
<dbl> <dbl> <dbl>

1 0.0746 0.209 0.209

In the previous chapter, we learned how to use the across() function to remove unnecessary
repetition from our code like this:

660



df_xyz %>%
summarise(

across(
.cols = everything(),
.fns = mean,
.names = "{col}_mean"

)
)

# A tibble: 1 x 3
x_mean y_mean z_mean
<dbl> <dbl> <dbl>

1 0.0746 0.209 -0.425

An alternative approach that would also work is to use a for loop like this:

xyz_means <- vector("double", ncol(df_xyz))

for(i in seq_along(df_xyz)) {
xyz_means[[i]] <- mean(df_xyz[[i]])

}

xyz_means

[1] 0.07462564 0.20862196 -0.42455887

Most people would agree that the for loop code is a little more complicated looking, and it’s a
little bit harder to quickly glance at it and figure out what’s going on. It may even be a little
bit intimidating for some of you.

Also, note that the result from the code that uses the across() function is a data frame with
three columns and one row. The result from the code that uses a for loop is a character vector
with three elements.

For the particular case above, we prefer to use the across() function instead of a for loop.
However, as we will see below, there are some challenges that can be overcome with for loops
that cannot currently be overcome with the across() function. But, before we jump into
more examples, let’s take a look at the basic structure of the for loop.

661



36.1 How to write for loops

For starters, using for loops in practice will generally require us to write code for two separate
structures: An object to contain the results of our for loop and the for loop itself.

Figure 36.2: Two structures required for a for loop

In practice, we will generally write the code for structure 1 before writing the code for structure
2. However, it will be easier to understand why we need structure 1 if we first learn about
the components of the for loop, and how they work together. Further, it will likely be easiest
to understand the components of the for loop if we start on the inside and work our way out.
Therefore, the first component of for loops that we are going to discuss is the body.

662



36.1.1 The for loop body

Figure 36.3: Body of the for loop

Similar to when we learned to write our own functions, the body of the for loop is where all the
“stuff” happens. This is where we write the code that we want to be executed over and over.
In our example, we want the mean value of the x column, the mean value of the y column, and
the mean value of the z column of our data frame called df_xyz. We can do that manually
like this using dollar sign notation:

mean(df_xyz$x)

[1] 0.07462564

mean(df_xyz$y)

[1] 0.208622

mean(df_xyz$z)

[1] -0.4245589

663



Or, we’ve also learned how to get the same result using bracket notation:

mean(df_xyz[["x"]])

[1] 0.07462564

mean(df_xyz[["y"]])

[1] 0.208622

mean(df_xyz[["z"]])

[1] -0.4245589

In the code above, we used the quoted column names inside the double brackets. However,
we could have also used each column’s position inside the double brackets. In other words, we
can use 1 to refer to the x column because it is the first column in the data frame, we can use
2 to refer to the y column because it is the second column in the data frame, and we can use
3 to refer to the z column because it is the third column in the data frame:

mean(df_xyz[[1]])

[1] 0.07462564

mean(df_xyz[[2]])

[1] 0.208622

mean(df_xyz[[3]])

[1] -0.4245589

For reasons that will become clearer later, this will actually be the syntax we want to use
inside of our for loop.

Notice, however, the we copied the same code more than twice above. For all of the reasons
we’ve already discussed, we would like to just type mean(df_xyz[[ # ]] once and have R
fill in the number inside the double brackets for us, one after the other. As you’ve probably
guessed, that’s exactly what the for loop does.

664



36.1.2 The for() function

All for loops start with the for() function. This is how you tell R that you are about to write
a for loop.

Figure 36.4: The for() function

In the examples in this book, the arguments to the for() function are generally going to follow
this pattern:

665



Figure 36.5: Pattern of the for() function arguments

1�An index variable, which is also sometimes called a “counter,” to the left of the keyword
in.

2�The keyword in.

3�The name of the object we want to loop (or iterate) over — often passed to theseq_along()
function.

It can be a little intimidating to look at, but that’s the basic structure. We will talk about all
three arguments simultaneously because they all work together, and we will get an error if we
are missing any one of them:

# No index variable
for(in 1) {
print(i)

}

Error in parse(text = input): <text>:2:5: unexpected 'in'
1: # No index variable
2: for(in

^

666



# No keyword "in"
for(i 1) {
print(i)

}

Error in parse(text = input): <text>:2:7: unexpected numeric constant
1: # No keyword "in"
2: for(i 1

^

# No object to loop over
for(i in ) {
print(i)

}

Error in parse(text = input): <text>:2:10: unexpected ')'
1: # No object to loop over
2: for(i in )

^

So, what happens when we do have all three of these components? Well, the index variable
will take on each value of the object to loop over iteratively (i.e., one at a time). If there is
only one object to loop over, this is how R sees the index variable inside of the loop:

for(i in 1) {
print(i)

}

[1] 1

If there are multiple objects to loop over, this is how R sees the index variable inside of the
loop:

for(i in c(1, 2, 3)) {
print(i)

}

[1] 1
[1] 2
[1] 3

667



Notice that the values being printed out are not a single numeric vector with three elements
(e.g. [1] 1, 2, 3) like the object we started with to the right of the keyword in. Instead,
three vectors with one element each are being printed out. One for 1 (i.e., [1] 1), one for 2
(i.e., [1] 2), and one for 3 (i.e., [1] 3). This is pointed out because it illustrates the iterative
nature of a for loop. The index variable doesn’t take on the values of the object to the right
of the keyword in simultaneously. It takes them on iteratively, or separately, one after the
other.

Further, it may not be immediately obvious at this point, but that’s the basic “magic” of the
for loop. The index variable changes once for each element of whatever object is on the right
side of the keyword in. Even the most complicated for loops generally start from this basic
idea.

Note that the index variable does not have to be the letter i. It can be any letter:

for(x in c(1, 2, 3)) {
print(x)

}

[1] 1
[1] 2
[1] 3

Or even a word:

for(number in c(1, 2, 3)) {
print(number)

}

[1] 1
[1] 2
[1] 3

However, i is definitely the most common letter to use as the index variable and we suggest that
you also use it in most cases. It’s just what people will expect to see and easily understand.

Now, let’s discuss the object to the right of the keyword in. In all of the examples above, we
passed a vector to the right of the keyword in. As you saw, when there is a vector to the
right of the keyword in, the index variable takes on the value of each element of the vector.
However, the object to the right of the keyword in does not have to be a vector. In fact, it
will often be a data frame.

668



When we ask the for loop to iterate over a data frame, what value do you think the index
variable will take? The value of each cell of the data frame? The name or number of each
column? The name or number of each row? Let’s see:

for(i in df_xyz) {
print(i)

}

[1] -0.56047565 -0.23017749 1.55870831 0.07050839 0.12928774 1.71506499
[7] 0.46091621 -1.26506123 -0.68685285 -0.44566197
[1] 1.2240818 0.3598138 0.4007715 0.1106827 -0.5558411 1.7869131
[7] 0.4978505 -1.9666172 0.7013559 -0.4727914
[1] -1.0678237 -0.2179749 -1.0260044 -0.7288912 -0.6250393 -1.6866933
[7] 0.8377870 0.1533731 -1.1381369 1.2538149

It may not be totally obvious to you, but inside the for loop above, the index variable took on
three separate vectors of values – one for each column in the data frame. Of course, getting
the mean value of each of these vectors is equivalent to getting the mean value of each column
in our data frame. Remember, data frame columns are vectors. So, let’s replace the print()
function with the mean() function in the for loop body and see what happens:

for(i in df_xyz) {
mean(i)

}

Hmmm, it doesn’t seem as though anything happened. This is probably a good time to
mention a little peculiarity about using for loops. As you can see in the example above, the
return value of functions, and the contents of objects, referenced inside of the for loop body
will not be printed to the screen unless we explicitly pass them to the print() function:

for(i in df_xyz) {
print(mean(i))

}

[1] 0.07462564
[1] 0.208622
[1] -0.4245589

It worked! This is the exact same answer we got above. And, if all we want to do is print the
mean values of x, y, and z to the screen, then we could stop here and call it a day. However,
we often want to save our analysis results to an object. In the chapter on using column-wise

669



operations with dplyr, we saved our summary statistics to an object in the usual way (i.e.,
with the assignment arrow):

xyz_means <- df_xyz %>%
summarise(

across(
.cols = everything(),
.fns = mean,
.names = "{col}_mean"

)
)

From there, we can manipulate the results, save the results to a file, or print them to screen:

xyz_means

# A tibble: 1 x 3
x_mean y_mean z_mean
<dbl> <dbl> <dbl>

1 0.0746 0.209 -0.425

At first, it may seem as though we can assign the results of our for loop to an object in a
similar way:

xyz_means <- for(i in df_xyz) {
mean(i)

}

xyz_means

NULL

Unfortunately, this doesn’t work. Instead, we need to create an object that can store the
results of our for loop. Then, we update (i.e., add to) that object at each iteration of the for
loop. That brings us back to structure number 1.

670



Figure 36.6: Two structures required for a for loop

Because the result of our for loop will be three numbers – the mean of x, the mean of y, and
the mean of z – the most straightforward object to store them in is a numeric vector with
a length of three (i.e., three “slots”). We can use the vector() function to create an empty
vector:

my_vec <- vector()
my_vec

logical(0)

As you can see, by default, the vector() function creates a logical vector with length zero.
We can change the vector type to numeric by passing "numeric" to the mode argument of the
vector() function. We can also change the length to 3 by passing 3 to the length argument
of the vector() function, and because we know we want this vector to hold the mean values
of x, y, and z, let’s name it xyz_means:

xyz_means <- vector("numeric", 3)
xyz_means

[1] 0 0 0

671



Finally, let’s update xyz_means inside our for loop body:

for(i in df_xyz) {
xyz_means <- mean(i)

}

xyz_means

[1] -0.4245589

Hmmm, we’re getting closer, but that obviously still isn’t the result we want. Below, we
attempt to illustrate what’s going on inside our loop.

R starts executing at the top of the for loop. In the first iteration, the value of i is set to a
numeric vector with the same values as the x column in df_xyz. Then, the i in mean(i) inside
the for loop body is replaced with those numeric values. Then, the mean of those numeric
values is calculated and assigned to the object named xyz_means.

Figure 36.7: Illustration of a for loop process - I

At this point, there is no more code left to execute inside of the for loop, so R returns to the
top of the loop.

672



Figure 36.8: Illustration of a for loop process - II

i has not yet taken every value of the object to the right of the keyword in, so R starts another
iteration of the for loop. In the second iteration, the value of i is set to a numeric vector with
the same values as the y column in df_xyz. Then, the i in mean(i) inside the for loop body
is replaced with those numeric values. Then, the mean of those numeric values is calculated
and assigned to the object named xyz_means.

673



Figure 36.9: Illustration of a for loop process - III

At this point, there is no more code left to execute inside of the for loop, so R returns to the
top of the loop.

674



Figure 36.10: Illustration of a for loop process - IV

i still has not yet taken every value of the object to the right of the keyword in, so R starts
another iteration of the for loop. In the third iteration, the value of i is set to a numeric
vector with the same values as the z column in df_xyz. Then, the i in mean(i) inside the for
loop body is replaced with those numeric values. Then, the mean of those numeric values is
calculated and assigned to the object named xyz_means.

675



Figure 36.11: Illustration of a for loop process - V

At this point, there is no more code left to execute inside of the for loop, so R returns to the
top of the loop. However, this time, i has taken every value of the object to the right of the
keyword in, so R does not start another iteration. It leaves the looping process, and the value
of xyz_means remains -0.4245589 – The result we got above.

You might be thinking, “wait, we made three slots in the xyz_means vector. Why does it only
contain one number?” Well, remember that all we have to do to overwrite one object with
another object is to assign the second object to the same name. For example, let’s create a
vector with three values called my_vec:

my_vec <- c(1, 2, 3)
my_vec

[1] 1 2 3

Now, let’s assign another value to my_vec:

my_vec <- -0.4245589
my_vec

[1] -0.4245589

676



As you can see, assignment (<-) doesn’t add to the vector, it overwrites (i.e., replaces) the
vector. That’s exactly what was happening inside of our for loop. To R, it basically looked
like this:

xyz_means <- 0.07462564
xyz_means <- 0.208622
xyz_means <- -0.4245589
xyz_means

[1] -0.4245589

What we really want is to create the empty vector:

xyz_means <- vector("numeric", 3)
xyz_means

[1] 0 0 0

And then add a value to each slot in the vector. Do you remember how to do this?

We can do this using bracket notation:

xyz_means[[1]] <- 0.07462564
xyz_means[[2]] <- 0.208622
xyz_means[[3]] <- -0.4245589
xyz_means

[1] 0.07462564 0.20862200 -0.42455890

That’s exactly the result we want.

Does that code above remind you of any other code we’ve already seen? How about this
code:

mean(df_xyz[[1]])

[1] 0.07462564

677



mean(df_xyz[[2]])

[1] 0.208622

mean(df_xyz[[3]])

[1] -0.4245589

Hmmm, what if we combine the two? First, let’s once again create our empty vector, and then
try combining the two code chunks above to fill it:

xyz_means <- vector("numeric", 3)
xyz_means

[1] 0 0 0

xyz_means[[1]] <- mean(df_xyz[[1]])
xyz_means[[2]] <- mean(df_xyz[[2]])
xyz_means[[3]] <- mean(df_xyz[[3]])
xyz_means

[1] 0.07462564 0.20862196 -0.42455887

Again, that’s exactly the result we want. Of course, there is still unnecessary repetition. If
you look at the code carefully, you may notice that the only thing that changes from line to
line is the number inside the double brackets. So, if we could just type xyz_means[[ # ]] <-
mean(df_xyz[[ # ]]) once, and update the number inside the double brackets, we should be
able to get the result we want. We’ve actually already seen how to do that with a for loop too.
Remember this for loop for the very beginning of the chapter:

for(i in c(1, 2, 3)) {
print(i)

}

[1] 1
[1] 2
[1] 3

678



That looks promising, right? Let’s once again create our empty vector, and then try combining
the two code chunks above to fill it:

xyz_means <- vector("numeric", 3)
xyz_means

[1] 0 0 0

for(i in c(1, 2, 3)) {
xyz_means[[i]] <- mean(df_xyz[[i]])

}

xyz_means

[1] 0.07462564 0.20862196 -0.42455887

It works! We have used a for loop to successfully remove the unnecessary repetition from our
code. However, there’s still something we could do to make the code more robust. In the for
loop above, we knew that we needed three iterations. Therefore, we passed c(1, 2, 3) as
the object to the right of the keyword in. But, what if we didn’t know exactly how columns
there were? What if we just knew that we wanted to iterate over all the columns in the data
frame passed to the right of the keyword in. How could we do that?

We can do that with the seq_along() function. When we pass a vector to the seq_along()
function, it returns a sequence of integers with the same length as the vector being passed,
starting at one. For example:

seq_along(c(4, 5, 6))

[1] 1 2 3

Or:

seq_along(c("a", "b", "c", "d"))

[1] 1 2 3 4

Similarly, when we pass a data frame to the seq_along() function, it returns a sequence of
integers with a length equal to the number of columns in the data frame being passed, starting
at one. For example:

679



seq_along(df_xyz)

[1] 1 2 3

Therefore, we can replace for(i in c(1, 2, 3)) with for(i in seq_along(df_xyz)) to
make our code more robust (i.e., it will work in more situations):

xyz_means <- vector("numeric", 3)

for(i in seq_along(df_xyz)) {
xyz_means[[i]] <- mean(df_xyz[[i]])

}

xyz_means

[1] 0.07462564 0.20862196 -0.42455887

Just to make sure that we really understand what’s going on in the code above, let’s walk
through the entire process one more time.

Figure 36.12: Illustration of a for loop process again - I

680



R starts executing at the top of the for loop. In the first iteration, the value of i is set to the
first value in seq_along(df_xyz), which is 1. Then, the i in df_xyz[[i]] inside the for loop
body is replaced with 1. Then, R calculates the mean of df_xyz[[1]], which is x column
of the df_xyz data frame. Finally, the mean value is assigned to xyz_means[[i]], which is
xyz_means[[1]] in this iteration. So, the value of the first element in the xyz_means vector
is 0.07462564.

At this point, there is no more code left to execute inside of the for loop, so R returns to the
top of the loop. i has not yet taken every value of the object to the right of the keyword in,
so R starts another iteration of the for loop.

Figure 36.13: Illustration of a for loop process again - II

In the second iteration, the value of i is set to the second value in seq_along(df_xyz), which is
2. Then, the i in df_xyz[[i]] inside the for loop body is replaced with 2. Then, R calculates
the mean of df_xyz[[2]], which is y column of the df_xyz data frame. Finally, the mean
value is assigned to xyz_means[[i]], which is xyz_means[[2]] in this iteration. So, the value
of the second element in the xyz_means vector is 0.20862196.

At this point, there is no more code left to execute inside of the for loop, so R returns to the
top of the loop. i still has not yet taken every value of the object to the right of the keyword
in, so R starts another iteration of the for loop.

681



Figure 36.14: Illustration of a for loop process again - III

In the third iteration, the value of i is set to the third value in seq_along(df_xyz), which is
3. Then, the i in df_xyz[[i]] inside the for loop body is replaced with 3. Then, R calculates
the mean of df_xyz[[3]], which is z column of the df_xyz data frame. Finally, the mean
value is assigned to xyz_means[[i]], which is xyz_means[[3]] in this iteration. So, the value
of the third element in the xyz_means vector is -0.42455887.

682



Figure 36.15: Illustration of a for loop process - V

At this point, there is no more code left to execute inside of the for loop, so R returns to the
top of the loop. However, this time, i has taken every value of the object to the right of the
keyword in, so R does not start another iteration. It leaves the looping process, and the value
of xyz_means remains 0.07462564, 0.20862196, -0.4245589.

There’s one final adjustment we should probably make to the code above. Did you no-
tice that when we create the empty vector to contain our results, we’re still hard coding
its length to 3? For the same reason we replaced for(i in c(1, 2, 3)) with for(i in
seq_along(df_xyz)), we want to replace vector("numeric", 3) with vector("numeric",
length(df_xyz)).

Now, let’s add a fourth column to our data frame:

df_xyz <- df_xyz %>%
mutate(a = rnorm(10)) %>%
print()

# A tibble: 10 x 4
x y z a

<dbl> <dbl> <dbl> <dbl>
1 -0.560 1.22 -1.07 0.426
2 -0.230 0.360 -0.218 -0.295

683



3 1.56 0.401 -1.03 0.895
4 0.0705 0.111 -0.729 0.878
5 0.129 -0.556 -0.625 0.822
6 1.72 1.79 -1.69 0.689
7 0.461 0.498 0.838 0.554
8 -1.27 -1.97 0.153 -0.0619
9 -0.687 0.701 -1.14 -0.306
10 -0.446 -0.473 1.25 -0.380

And see what happens when we pass it to our new, robust for loop code:

xyz_means <- vector("numeric", length(df_xyz)) # Using length() instead of 3

for(i in seq_along(df_xyz)) { # Using seq_along() instead of c(1, 2, 3)
xyz_means[[i]] <- mean(df_xyz[[i]])

}

xyz_means

[1] 0.07462564 0.20862196 -0.42455887 0.32204455

Our for loop now gives us the result we want no matter how many columns are in the data frame.
Having the flexibility to loop over an arbitrary number of columns wasn’t that important in
this case – we knew exactly how many columns we wanted to loop over. However, what if we
wanted to add more columns in the future? Using the second method, we wouldn’t have to
make any changes to our code. This is often an important consideration when we embed for
loops inside of functions that we write ourselves.

For example, maybe we think, “that for loop above was really useful. I want to write it into
a function so that I can use it again in my other projects.” Well, we’ve already seen how to
take our working code, embed it inside of a function, make it more general, and assign it a
name. If you forgot how to do this, please review the function writing process. In this case,
that process would result in something like this:

multi_means <- function(data) {
# Create a structure to contain results
result <- vector("numeric", length(data))

# Iterate over each column of data
for(i in seq_along(data)) {

result[[i]] <- mean(data[[i]])
}

684



# Return the result
result

}

Which we can easily apply to our data frame like this:

multi_means(df_xyz)

[1] 0.07462564 0.20862196 -0.42455887 0.32204455

Further, because we’ve made the for loop code inside of the function body flexible with
length() and seq_along() we can easily pass any other data frame (with all numeric columns)
to our function like this:

set.seed(123)
new_df <- tibble(
age = rnorm(10, 50, 10),
height = rnorm(10, 65, 5),
weight = rnorm(10, 165, 10)

) %>%
print()

# A tibble: 10 x 3
age height weight

<dbl> <dbl> <dbl>
1 44.4 71.1 154.
2 47.7 66.8 163.
3 65.6 67.0 155.
4 50.7 65.6 158.
5 51.3 62.2 159.
6 67.2 73.9 148.
7 54.6 67.5 173.
8 37.3 55.2 167.
9 43.1 68.5 154.
10 45.5 62.6 178.

multi_means(new_df)

[1] 50.74626 66.04311 160.75441

685



If we want our for loop to return the results with informative names, similar those that are
returned when we use the across() method, we can simply add one line of code to our for
loop body that names each result:

xyz_means <- vector("numeric", length(df_xyz))

for(i in seq_along(df_xyz)) {
xyz_means[[i]] <- mean(df_xyz[[i]])
names(xyz_means)[[i]] <- paste0(names(df_xyz)[[i]], "_mean") # Name results here

}

xyz_means

x_mean y_mean z_mean a_mean
0.07462564 0.20862196 -0.42455887 0.32204455

If it isn’t quite clear to you why that code works, try picking it apart, replacing i with a
number, and figuring out how it works.

We can make our results resemble those returned by the across() method even more by
converting our named vector to a data frame like this:

xyz_means %>%
as.list() %>%
as_tibble()

# A tibble: 1 x 4
x_mean y_mean z_mean a_mean
<dbl> <dbl> <dbl> <dbl>

1 0.0746 0.209 -0.425 0.322

Finally, we can update our multi_means() function with changes we made above so that our
results are returned as a data frame with informative column names:

multi_means <- function(data) {
# Create a structure to contain results
result <- vector("numeric", length(data))

# Iterate over each column of data
for(i in seq_along(data)) {

result[[i]] <- mean(data[[i]])

686



names(result)[[i]] <- paste0(names(data)[[i]], "_mean")
}

# Return the result as a tibble
as_tibble(as.list(result))

}

multi_means(new_df)

# A tibble: 1 x 3
age_mean height_mean weight_mean

<dbl> <dbl> <dbl>
1 50.7 66.0 161.

36.2 Using for loops for data transfer

In the previous section, we used an example that wasn’t really all that realistic, but it was
useful (hopefully) for learning the mechanics of for loops. As mentioned at the beginning of the
chapter, rather than using a for loop for the analysis above, using across() with summarise()
might be preferable.

However, keep in mind that across() is designed specifically for repeatedly applying functions
column-wise (i.e., across columns) of a single data frame in conjunction with dplyr verbs. By
definition, if we are repeating code outside of dplyr, or if we are applying code across multiple
data frames, then we probably aren’t going to be able to use across() to complete our coding
task.

For example, let’s say that we have data stored across multiple sheets of an Excel workbook.
This simulated data contains some demographic information about three different cities: Hous-
ton, Atlanta, and Charlotte. We need to import each sheet, clean the data, and combine
them into a single data frame in order to complete our analysis. First, we will load the
readxlpackage:

library(readxl)

You may click here to download this file to your computer.

Then, we may import each sheet like this:

687

https://github.com/brad-cannell/r4epi/blob/master/data/city_ses.xlsx


houston <- read_excel(
"city_ses.xlsx",
sheet = "Houston"

) %>%
print()

# A tibble: 5 x 4
pid age sex ses_score
<chr> <dbl> <chr> <dbl>

1 001 13 F 88
2 003 13 F 78
3 007 14 M 83
4 014 12 F 76
5 036 13 M 84

atlanta <- read_excel(
"city_ses.xlsx",
sheet = "Atlanta"

) %>%
print()

# A tibble: 5 x 4
id age gender ses_score
<chr> <dbl> <chr> <dbl>

1 002 14 M 64
2 009 15 M 35
3 012 13 F 70
4 013 13 F 66
5 022 12 F 59

charlotte <- read_excel(
"city_ses.xlsx",
sheet = "Charlotte"

) %>%
print()

# A tibble: 5 x 4
pid age sex ses
<chr> <dbl> <chr> <dbl>

1 004 13 F 84

688



2 011 14 M 66
3 018 12 M 92
4 023 12 M 89
5 030 13 F 83

�In the code chunks above, we have essentially the same code copied more than twice. That’s
a red flag that we should be thinking about removing unnecessary repetition from our code.
Of course, we could write our own function to reduce some of the repetition:

import_cities <- function(sheet) {
df <- read_excel(

"city_ses.xlsx",
sheet = sheet

)
}

houston <- import_cities("Houston") %>% print()

# A tibble: 5 x 4
pid age sex ses_score
<chr> <dbl> <chr> <dbl>

1 001 13 F 88
2 003 13 F 78
3 007 14 M 83
4 014 12 F 76
5 036 13 M 84

atlanta <- import_cities("Atlanta") %>% print()

# A tibble: 5 x 4
id age gender ses_score
<chr> <dbl> <chr> <dbl>

1 002 14 M 64
2 009 15 M 35
3 012 13 F 70
4 013 13 F 66
5 022 12 F 59

charlotte <- import_cities("Charlotte") %>% print()

689



# A tibble: 5 x 4
pid age sex ses
<chr> <dbl> <chr> <dbl>

1 004 13 F 84
2 011 14 M 66
3 018 12 M 92
4 023 12 M 89
5 030 13 F 83

That method is better. And depending on the circumstances of your project, it may be the
best approach. However, an alternative approach would be to use a for loop. Using the for
loop approach might look something like this:

# Save the file path to an object so we don't have to type it repeatedly
# or hard-code it in.
path <- "city_ses.xlsx"

# Use readxl::excel_sheets to get the name of each sheet in the workbook.
# this makes our code more robust.
sheets <- excel_sheets(path)

for(i in seq_along(sheets)) {
# Convert sheet name to lowercase before using it to name the df
new_nm <- tolower(sheets[[i]])
assign(new_nm, read_excel(path, sheet = sheets[[i]]))

}

houston

# A tibble: 5 x 4
pid age sex ses_score
<chr> <dbl> <chr> <dbl>

1 001 13 F 88
2 003 13 F 78
3 007 14 M 83
4 014 12 F 76
5 036 13 M 84

atlanta

# A tibble: 5 x 4

690



id age gender ses_score
<chr> <dbl> <chr> <dbl>

1 002 14 M 64
2 009 15 M 35
3 012 13 F 70
4 013 13 F 66
5 022 12 F 59

charlotte

# A tibble: 5 x 4
pid age sex ses
<chr> <dbl> <chr> <dbl>

1 004 13 F 84
2 011 14 M 66
3 018 12 M 92
4 023 12 M 89
5 030 13 F 83

�Here’s what we did above:

• We used a for loop to import every sheet from an Excel workbook.

• First, we saved the path to the Excel workbook to a separate object. We didn’t have
to do this. However, doing so prevented us from having to type out the full file path
repeatedly in the rest of our code. Additionally, if the file path ever changed, we would
only have to update it in one place.

• Second, we used the excel_sheets() function to create a character vector containing
each sheet name. We didn’t have to do this. We could have typed each sheet name man-
ually. However, there shouldn’t be any accidental typos if we use the excel_sheets()
function, and we don’t have to make any changes to our code if more sheets are added
to the Workbook in the future.

• Inside the for loop, we assigned each data frame created by the read_excel() function
to our global environment using the assign() function. We haven’t used the assign()
function before, but you can read the help documentation by typing ?assign in your R
console.

– The first argument to the assign() function is x. The value you pass to x should
be the name of the object you want to create. Above, we passed new_nm (for new
name) to the x argument. At each iteration of the for loop, new_nm contained the
name of each sheet in sheets. So, Houston at the first iteration, Atlanta at the
second iteration, and Charlotte at the third iteration. Of course, we like using

691



lowercase names for our data frames, so we used tolower() to convert Houston,
Atlanta, and Charlotte to houston, atlanta, and charlotte. These will be the
names used for each data frame assigned to our global environment inside of the
for loop.

– The second argument to the assign() function is value. The value you pass to
value should be the contents you want to assign the object with the name you
passed to the x argument. Above, we passed the code that imports each sheet of
the city_ses.xlsx data frame to the value argument.

For loops can often be helpful for data transfer tasks. In the code above, we looped over
sheets of a single Excel workbook. However, we could have similarly looped over file paths to
import multiple different Excel workbooks instead. We could have even used nested for loops
to import multiple sheets from multiple Excel workbooks. The code would not have looked
drastically different.

36.3 Using for loops for data management

In the chapter on writing functions, we created an is_match() function. In that scenario,
we wanted to see if first name, last name, and street name matched at each ID between our
data frames. More specifically, we wanted to combine the two data frames into a single data
frame and create three new dummy variables that indicated whether first name, last name,
and address matched respectively.

Here are the data frames we simulated and combined:

people_1 <- tribble(
~id_1, ~name_first_1, ~name_last_1, ~street_1,
1, "Easton", NA, "Alameda",
2, "Elias", "Salazar", "Crissy Field",
3, "Colton", "Fox", "San Bruno",
4, "Cameron", "Warren", "Nottingham",
5, "Carson", "Mills", "Jersey",
6, "Addison", "Meyer", "Tingley",
7, "Aubrey", "Rice", "Buena Vista",
8, "Ellie", "Schmidt", "Division",
9, "Robert", "Garza", "Red Rock",
10, "Stella", "Daniels", "Holland"

)

692



people_2 <- tribble(
~id_2, ~name_first_2, ~name_last_2, ~street_2,
1, "Easton", "Stone", "Alameda",
2, "Elas", "Salazar", "Field",
3, NA, "Fox", NA,
4, "Cameron", "Waren", "Notingham",
5, "Carsen", "Mills", "Jersey",
6, "Adison", NA, NA,
7, "Aubrey", "Rice", "Buena Vista",
8, NA, "Schmidt", "Division",
9, "Bob", "Garza", "Red Rock",
10, "Stella", NA, "Holland"

)

people <- people_1 %>%
bind_cols(people_2) %>%
print()

# A tibble: 10 x 8
id_1 name_first_1 name_last_1 street_1 id_2 name_first_2 name_last_2

<dbl> <chr> <chr> <chr> <dbl> <chr> <chr>
1 1 Easton <NA> Alameda 1 Easton Stone
2 2 Elias Salazar Crissy Field 2 Elas Salazar
3 3 Colton Fox San Bruno 3 <NA> Fox
4 4 Cameron Warren Nottingham 4 Cameron Waren
5 5 Carson Mills Jersey 5 Carsen Mills
6 6 Addison Meyer Tingley 6 Adison <NA>
7 7 Aubrey Rice Buena Vista 7 Aubrey Rice
8 8 Ellie Schmidt Division 8 <NA> Schmidt
9 9 Robert Garza Red Rock 9 Bob Garza

10 10 Stella Daniels Holland 10 Stella <NA>
# i 1 more variable: street_2 <chr>

Here is the function we wrote to help us create the dummy variables:

is_match <- function(value_1, value_2) {
result <- value_1 == value_2
result <- if_else(is.na(result), FALSE, result)
result

}

693



And here is how we applied the function we wrote to get our results:

people %>%
mutate(

name_first_match = is_match(name_first_1, name_first_2),
name_last_match = is_match(name_last_1, name_last_2),
street_match = is_match(street_1, street_2)

) %>%
# Order like columns next to each other for easier comparison
select(id_1, starts_with("name_f"), starts_with("name_l"), starts_with("s"))

# A tibble: 10 x 10
id_1 name_first_1 name_first_2 name_first_match name_last_1 name_last_2

<dbl> <chr> <chr> <lgl> <chr> <chr>
1 1 Easton Easton TRUE <NA> Stone
2 2 Elias Elas FALSE Salazar Salazar
3 3 Colton <NA> FALSE Fox Fox
4 4 Cameron Cameron TRUE Warren Waren
5 5 Carson Carsen FALSE Mills Mills
6 6 Addison Adison FALSE Meyer <NA>
7 7 Aubrey Aubrey TRUE Rice Rice
8 8 Ellie <NA> FALSE Schmidt Schmidt
9 9 Robert Bob FALSE Garza Garza
10 10 Stella Stella TRUE Daniels <NA>
# i 4 more variables: name_last_match <lgl>, street_1 <chr>, street_2 <chr>,
# street_match <lgl>

�However, in the code chunk above, we still have essentially the same code copied more than
twice. That’s a red flag that we should be thinking about removing unnecessary repetition
from our code. Because we are using dplyr, and all of our data resides inside of a single data
frame, your first instinct might be to use across() inside of mutate() to perform column-wise
operations. Unfortunately, that method won’t work in this scenario.

The across() function will apply the function we pass to the .fns argument to each column
passed to the .cols argument, one at a time. But, we need to pass two columns at a time to
the is_match() function. For example, name_first_1 and name_first_2. There’s really no
good way to accomplish this task using is_match() inside of across(). However, it is fairly
simple to accomplish this task with a for loop:

cols <- c("name_first", "name_last", "street")

for(i in seq_along(cols)) {

694



col_1 <- paste0(cols[[i]], "_1")
col_2 <- paste0(cols[[i]], "_2")
new_col <- paste0(cols[[i]], "_match")
people[[new_col]] <- is_match(people[[col_1]], people[[col_2]])

}

people %>%
select(id_1, starts_with("name_f"), starts_with("name_l"), starts_with("s"))

# A tibble: 10 x 10
id_1 name_first_1 name_first_2 name_first_match name_last_1 name_last_2

<dbl> <chr> <chr> <lgl> <chr> <chr>
1 1 Easton Easton TRUE <NA> Stone
2 2 Elias Elas FALSE Salazar Salazar
3 3 Colton <NA> FALSE Fox Fox
4 4 Cameron Cameron TRUE Warren Waren
5 5 Carson Carsen FALSE Mills Mills
6 6 Addison Adison FALSE Meyer <NA>
7 7 Aubrey Aubrey TRUE Rice Rice
8 8 Ellie <NA> FALSE Schmidt Schmidt
9 9 Robert Bob FALSE Garza Garza
10 10 Stella Stella TRUE Daniels <NA>
# i 4 more variables: name_last_match <lgl>, street_1 <chr>, street_2 <chr>,
# street_match <lgl>

�Here’s what we did above:

• We used our is_match() function inside of a for loop to create three new dummy vari-
ables that indicated whether first name, last name, and address matched respectively.

Let’s pull the code apart piece-by-piece to see how it works.

cols <- c("name_first", "name_last", "street")

for(i in seq_along(cols)) {
col_1 <- paste0(cols[[i]], "_1")
col_2 <- paste0(cols[[i]], "_2")
new_col <- paste0(cols[[i]], "_match")
print(col_1)
print(col_2)
print(new_col)

}

695



[1] "name_first_1"
[1] "name_first_2"
[1] "name_first_match"
[1] "name_last_1"
[1] "name_last_2"
[1] "name_last_match"
[1] "street_1"
[1] "street_2"
[1] "street_match"

First, we created a character vector that contained the base name (i.e., no _1 or _2) of each of
the columns we wanted to compare. Then, we iterated over that character vector by passing
it as the object to the right of the keyword in.

At each iteration, we used paste0() to create three column names from the character string in
cols. For example, in the first iteration of the loop, the value of cols was name_first. The
first line of code in the for loop body combined name_first with _1 to make the character
string name_first_1 and save it as an object named col_1. The second line of code in the
for loop body combined name_first with _2 to make the character string name_first_2 and
save it as an object named col_2. And, the third line of code in the for loop body combined
name_first with _match to make the character string name_first_match and save it as an
object named new_col.

This will allow us to use col_1, col_2, and new_col in the code that compares the columns
and creates each dummy variable. For example, here is what people[[col_1]] looks like at
each iteration:

cols <- c("name_first", "name_last", "street")

for(i in seq_along(cols)) {
col_1 <- paste0(cols[[i]], "_1")
col_2 <- paste0(cols[[i]], "_2")
print(people[[col_1]])

}

[1] "Easton" "Elias" "Colton" "Cameron" "Carson" "Addison" "Aubrey"
[8] "Ellie" "Robert" "Stella"
[1] NA "Salazar" "Fox" "Warren" "Mills" "Meyer" "Rice"
[8] "Schmidt" "Garza" "Daniels"
[1] "Alameda" "Crissy Field" "San Bruno" "Nottingham" "Jersey"
[6] "Tingley" "Buena Vista" "Division" "Red Rock" "Holland"

696



It is a vector that matches people[["name_first_1"]], people[["name_last_1"]], and
people[["street_1"]] respectively.

And here is what col_2 looks like at each iteration:

cols <- c("name_first", "name_last", "street")

for(i in seq_along(cols)) {
col_1 <- paste0(cols[[i]], "_1")
col_2 <- paste0(cols[[i]], "_2")
print(people[[col_2]])

}

[1] "Easton" "Elas" NA "Cameron" "Carsen" "Adison" "Aubrey"
[8] NA "Bob" "Stella"
[1] "Stone" "Salazar" "Fox" "Waren" "Mills" NA "Rice"
[8] "Schmidt" "Garza" NA
[1] "Alameda" "Field" NA "Notingham" "Jersey"
[6] NA "Buena Vista" "Division" "Red Rock" "Holland"

Now, we can pass each vector to our is_match() function at each iteration like this:

cols <- c("name_first", "name_last", "street")

for(i in seq_along(cols)) {
col_1 <- paste0(cols[[i]], "_1")
col_2 <- paste0(cols[[i]], "_2")
print(is_match(people[[col_1]], people[[col_2]]))

}

[1] TRUE FALSE FALSE TRUE FALSE FALSE TRUE FALSE FALSE TRUE
[1] FALSE TRUE TRUE FALSE TRUE FALSE TRUE TRUE TRUE FALSE
[1] TRUE FALSE FALSE FALSE TRUE FALSE TRUE TRUE TRUE TRUE

These logical vectors are the results we want to go into our new dummy variables.
Therefore, the last step is to assign each logical vector above to a new variable in our
data frame called people[["name_first_match"]], people[["name_last_match"]], and
people[["street_match"]] respectively. We do so by allowing people[[new_col]] to
represent those values at each iteration of the loop:

697



cols <- c("name_first", "name_last", "street")

for(i in seq_along(cols)) {
col_1 <- paste0(cols[[i]], "_1")
col_2 <- paste0(cols[[i]], "_2")
new_col <- paste0(cols[[i]], "_match")
people[[new_col]] <- is_match(people[[col_1]], people[[col_2]])

}

And here is our result:

people %>%
select(id_1, starts_with("name_f"), starts_with("name_l"), starts_with("s"))

# A tibble: 10 x 10
id_1 name_first_1 name_first_2 name_first_match name_last_1 name_last_2

<dbl> <chr> <chr> <lgl> <chr> <chr>
1 1 Easton Easton TRUE <NA> Stone
2 2 Elias Elas FALSE Salazar Salazar
3 3 Colton <NA> FALSE Fox Fox
4 4 Cameron Cameron TRUE Warren Waren
5 5 Carson Carsen FALSE Mills Mills
6 6 Addison Adison FALSE Meyer <NA>
7 7 Aubrey Aubrey TRUE Rice Rice
8 8 Ellie <NA> FALSE Schmidt Schmidt
9 9 Robert Bob FALSE Garza Garza
10 10 Stella Stella TRUE Daniels <NA>
# i 4 more variables: name_last_match <lgl>, street_1 <chr>, street_2 <chr>,
# street_match <lgl>

In the code above, we used roughly the same amount of code to complete the task with a loop
that we used to complete it without a loop. However, this code still has some advantages. We
only typed “name_first”, “name_last”, and “street” once at the beginning of the code chunk.
Therefore, we didn’t have to worry about forgetting to change a column name after copying
and pasting code. Additionally, if we later decide that we also want to compare other columns
(e.g., middle name, birth date, city, state, zip code), we only have to update the code in one
place – where we create the cols vector.

698



36.4 Using for loops for analysis

For our final example of this chapter, let’s return to the final example from the column-wise
operations chapter. We started with some simulated study data:

study <- tibble(
age = c(32, 30, 32, 29, 24, 38, 25, 24, 48, 29, 22, 29, 24, 28, 24, 25,

25, 22, 25, 24, 25, 24, 23, 24, 31, 24, 29, 24, 22, 23, 26, 23,
24, 25, 24, 33, 27, 25, 26, 26, 26, 26, 26, 27, 24, 43, 25, 24,
27, 28, 29, 24, 26, 28, 25, 24, 26, 24, 26, 31, 24, 26, 31, 34,
26, 25, 27, NA),

age_group = c(2, 2, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1,
1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2,
2, 1, 1, 1, NA),

gender = c(2, 1, 1, 2, 1, 1, 1, 2, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1,
1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1,
1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 1, 1, 2, 1, 2, 1,
1, 1, 2, 1, NA),

ht_in = c(70, 63, 62, 67, 67, 58, 64, 69, 65, 68, 63, 68, 69, 66, 67, 65,
64, 75, 67, 63, 60, 67, 64, 73, 62, 69, 67, 62, 68, 66, 66, 62,
64, 68, NA, 68, 70, 68, 68, 66, 71, 61, 62, 64, 64, 63, 67, 66,
69, 76, NA, 63, 64, 65, 65, 71, 66, 65, 65, 71, 64, 71, 60, 62,
61, 69, 66, NA),

wt_lbs = c(216, 106, 145, 195, 143, 125, 138, 140, 158, 167, 145, 297, 146,
125, 111, 125, 130, 182, 170, 121, 98, 150, 132, 250, 137, 124,
186, 148, 134, 155, 122, 142, 110, 132, 188, 176, 188, 166, 136,
147, 178, 125, 102, 140, 139, 60, 147, 147, 141, 232, 186, 212,
110, 110, 115, 154, 140, 150, 130, NA, 171, 156, 92, 122, 102,
163, 141, NA),

bmi = c(30.99, 18.78, 26.52, 30.54, 22.39, 26.12, 23.69, 20.67, 26.29,
25.39, 25.68, 45.15, 21.56, 20.17, 17.38, 20.8, 22.31, 22.75,
26.62, 21.43, 19.14, 23.49, 22.66, 32.98, 25.05, 18.31, 29.13,
27.07, 20.37, 25.01, 19.69, 25.97, 18.88, 20.07, NA, 26.76,
26.97, 25.24, 20.68, 23.72, 24.82, 23.62, 18.65, 24.03, 23.86,
10.63, 23.02, 23.72, 20.82, 28.24, NA, 37.55, 18.88, 18.3,
19.13, 21.48, 22.59, 24.96, 21.63, NA, 29.35, 21.76, 17.97,
22.31, 19.27, 24.07, 22.76, NA),

bmi_3cat = c(3, 1, 2, 3, 1, 2, 1, 1, 2, 2, 2, 3, 1, 1, 1, 1, 1, 1, 2, 1, 1,
1, 1, 3, 2, 1, 2, 2, 1, 2, 1, 2, 1, 1, NA, 2, 2, 2, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 2, NA, 3, 1, 1, 1, 1, 1, 1, 1, NA, 2, 1,
1, 1, 1, 1, 1, NA)

699



) %>%
mutate(

age_group = factor(age_group, labels = c("Younger than 30", "30 and Older")),
gender = factor(gender, labels = c("Female", "Male")),
bmi_3cat = factor(bmi_3cat, labels = c("Normal", "Overweight", "Obese"))

) %>%
print()

# A tibble: 68 x 7
age age_group gender ht_in wt_lbs bmi bmi_3cat

<dbl> <fct> <fct> <dbl> <dbl> <dbl> <fct>
1 32 30 and Older Male 70 216 31.0 Obese
2 30 30 and Older Female 63 106 18.8 Normal
3 32 30 and Older Female 62 145 26.5 Overweight
4 29 Younger than 30 Male 67 195 30.5 Obese
5 24 Younger than 30 Female 67 143 22.4 Normal
6 38 30 and Older Female 58 125 26.1 Overweight
7 25 Younger than 30 Female 64 138 23.7 Normal
8 24 Younger than 30 Male 69 140 20.7 Normal
9 48 30 and Older Male 65 158 26.3 Overweight
10 29 Younger than 30 Male 68 167 25.4 Overweight
# i 58 more rows

Then we saw how to use across() with pivot_longer() to remove repetition and get our
results into a format that were easier to read an interpret:

summary_stats <- study %>%
summarise(

across(
.cols = c(age, ht_in, wt_lbs, bmi),
.fns = list(
n_miss = ~ sum(is.na(.x)),
mean = ~ mean(.x, na.rm = TRUE),
median = ~ median(.x, na.rm = TRUE),
min = ~ min(.x, na.rm = TRUE),
max = ~ max(.x, na.rm = TRUE)

),
.names = "{col}-{fn}" # This is the new part of the code

)
) %>%
print()

700



# A tibble: 1 x 20
`age-n_miss` `age-mean` `age-median` `age-min` `age-max` `ht_in-n_miss`

<int> <dbl> <dbl> <dbl> <dbl> <int>
1 1 26.9 26 22 48 3
# i 14 more variables: `ht_in-mean` <dbl>, `ht_in-median` <dbl>,
# `ht_in-min` <dbl>, `ht_in-max` <dbl>, `wt_lbs-n_miss` <int>,
# `wt_lbs-mean` <dbl>, `wt_lbs-median` <dbl>, `wt_lbs-min` <dbl>,
# `wt_lbs-max` <dbl>, `bmi-n_miss` <int>, `bmi-mean` <dbl>,
# `bmi-median` <dbl>, `bmi-min` <dbl>, `bmi-max` <dbl>

summary_stats %>%
tidyr::pivot_longer(

cols = everything(),
names_to = c("characteristic", ".value"),
names_sep = "-"

)

# A tibble: 4 x 6
characteristic n_miss mean median min max
<chr> <int> <dbl> <dbl> <dbl> <dbl>

1 age 1 26.9 26 22 48
2 ht_in 3 66.0 66 58 76
3 wt_lbs 2 148. 142. 60 297
4 bmi 4 23.6 22.9 10.6 45.2

I think that method works really nicely for our continuous variables; however, the situation
is slightly more complicated for categorical variables. To illustrate the problem as simply as
possible, let’s start by just getting counts for each of our categorical variables:

study %>%
count(age_group)

# A tibble: 3 x 2
age_group n
<fct> <int>

1 Younger than 30 56
2 30 and Older 11
3 <NA> 1

701



study %>%
count(gender)

# A tibble: 3 x 2
gender n
<fct> <int>

1 Female 43
2 Male 24
3 <NA> 1

study %>%
count(bmi_3cat)

# A tibble: 4 x 2
bmi_3cat n
<fct> <int>

1 Normal 43
2 Overweight 16
3 Obese 5
4 <NA> 4

You are, of course, and old pro at this by now, and you quickly spot all the unnecessary
repetition. So, you decide to pass count to the .fns argument like this:

study %>%
summarise(

across(
.cols = c(age_group, gender, bmi_3cat),
.fns = count

)
)

Error in `summarise()`:
i In argument: `across(.cols = c(age_group, gender, bmi_3cat), .fns =
count)`.

Caused by error in `across()`:
! Can't compute column `age_group`.
Caused by error in `UseMethod()`:
! no applicable method for 'count' applied to an object of class "factor"

702



Unfortunately, this won’t work. At least not currently. There are a couple reasons why this
won’t work, but the one that is probably easiest to wrap your head around is related to
the number of results produced by count(). What does this mean? Well, when we pass
each continuous variable to mean() (or median, min, or max) we get one result back for each
column:

study %>%
summarise(

across(
.cols = c(age, ht_in),
.fns = ~ mean(.x, na.rm = TRUE)

)
)

# A tibble: 1 x 2
age ht_in

<dbl> <dbl>
1 26.9 66.0

It’s easy for dplyr to arrange those results into a data frame. However, the results from
count() are much less predictable. For example, study %>% count(age_group) had three
results, study %>% count(gender) had three results, and study %>% count(bmi_3cat) had
four results. Also, remember that every column of a data frame has to have the same number
of rows. So, if the code we used to try to pass count to the .fns argument above would
actually run, it might look something like this:

703



Figure 36.16: Representation of result from the above code if it could be run successfully

Because summarise() lays the results out side-by-side, it’s not clear what would go into the
4 cells in the bottom-left corner of the results data frame. Therefore, it isn’t necessarily
straightforward for dplyr to figure out how it should return such results to us.

However, when we use a for loop, we can create our own structure to hold the results. And,
that structure can be pretty much any structure that meets our needs. In this case, one option
would be to create a data frame to hold our categorical counts that looks like this:

704



Figure 36.17: Empty data frame structure to hold for loop results

Then, we can use a for loop to fill in the empty data frame so that we end up with results that
look like this:

705



Figure 36.18: Data frame structure with for loop results

The process for getting to our finished product is a little bit involved (and probably a little
intimidating for some of you) and will require us to cover a couple new topics. So, we’ll start
by giving you the complete code for accomplishing this task. Then, we’ll pick the code apart,
piece-by-piece, to make sure we understand how it works.

Here is the complete solution:

# Structure 1. An object to contain the results.
# Create the data frame structure that will contain our results

cat_table <- tibble(
variable = vector("character"),
category = vector("character"),
n = vector("numeric")

)

# Structure 2. The actual for loop.
# For each column, get the column name, category names, and count.
# Then, add them to the bottom of the results data frame we created above.

for(i in c("age_group", "gender", "bmi_3cat")) {
cat_stats <- study %>%

count(.data[[i]]) %>% # Use .data to refer to the current data frame.
mutate(variable = names(.)[1]) %>% # Use . to refer to the result to this point.

706



rename(category = 1)

# Here is where we update cat_table with the results for each column
cat_table <- bind_rows(cat_table, cat_stats)

}

cat_table

# A tibble: 10 x 3
variable category n
<chr> <chr> <dbl>

1 age_group Younger than 30 56
2 age_group 30 and Older 11
3 age_group <NA> 1
4 gender Female 43
5 gender Male 24
6 gender <NA> 1
7 bmi_3cat Normal 43
8 bmi_3cat Overweight 16
9 bmi_3cat Obese 5
10 bmi_3cat <NA> 4

We’ll use the rest of this chapter section to walk through the code above and make sure we
understand how it works. For starters, we will create our results data frame structure like
this:

cat_table <- tibble(
variable = vector("character"),
category = vector("character"),
n = vector("numeric")

)

str(cat_table)

tibble [0 x 3] (S3: tbl_df/tbl/data.frame)
$ variable: chr(0)
$ category: chr(0)
$ n : num(0)

707



As you can see, we created an empty data frame with three columns. One to hold the variable
names, one to hold the variable categories, and one to hold the count of occurrences of each
category. Now, we can use a for loop to iteratively add results to our empty data frame
structure. This works similarly to the way we added mean values to the xyz_means vector in
the first example above. As a reminder, here is what the for loop code looks like:

for(i in c("age_group", "gender", "bmi_3cat")) {
cat_stats <- study %>%

count(.data[[i]]) %>%
mutate(variable = names(.)[1]) %>%
rename(category = 1)

cat_table <- bind_rows(cat_table, cat_stats)
}

For our next step, let’s walk through the first little chunk of code inside the for loop body.
Specifically:

cat_stats <- study %>%
count(.data[[i]]) %>%
mutate(variable = names(.)[1]) %>%
rename(category = 1)

If we were using this code to analyze a single variable, as opposed to using it in a for loop, this
is what the result would look like:

cat_stats <- study %>%
count(age_group) %>%
mutate(variable = names(.)[1]) %>%
rename(category = 1) %>%
print()

# A tibble: 3 x 3
category n variable
<fct> <int> <chr>

1 Younger than 30 56 age_group
2 30 and Older 11 age_group
3 <NA> 1 age_group

We’ve already seen what the study %>% count(age_group) part of the code does, and we
already know that we can use mutate() to create a new column in our data frame. In this case,

708



the name of the new column is variable. But, you may be wondering what the names(.)[1]
after the equal sign does. Let’s take a look. Here, we can see the data frame that is getting
passed to mutate():

cat_stats <- study %>%
count(age_group) %>%
print()

# A tibble: 3 x 2
age_group n
<fct> <int>

1 Younger than 30 56
2 30 and Older 11
3 <NA> 1

It’s a data frame with two columns. The first column actually has two different kinds of
information that we need. It contains the name of the variable being analyzed as the column
name, and it contains all the categories of that variable as the column values. We want to
separate those two pieces of information into two columns. This task is similar to some of the
“tidy data” tasks we worked through in the chapter on restructuring data frames. In fact, we
can also use pivot_longer() to get the result we want:

study %>%
count(age_group) %>%
tidyr::pivot_longer(

cols = "age_group",
names_to = "variable",
values_to = "category"

)

# A tibble: 3 x 3
n variable category

<int> <chr> <fct>
1 56 age_group Younger than 30
2 11 age_group 30 and Older
3 1 age_group <NA>

In this solution for this task, however, we’re not going to use pivot_longer() for a couple of
reasons. First, it’s an opportunity for us to learn about the special use of dot (.) inside of
dplyr verbs. Second, this solution will use dplyr only. It will not require us to use the tidyr
package.

709



Before we talk about the dot, however, let’s make sure we know what the names()[1] is doing.
There aren’t any new concepts here, but we may not have used them this way before. The
name() function just returns a character vector containing the column names of the data frame
we pass to it. So, when we pass the cat_stats data frame to it, this is what it returns:

names(cat_stats)

[1] "age_group" "n"

We want to use the first value, "age_group" to fill-in our the new variable column we want
to create. We can use bracket notation to subset the first element of the character vector of
column names above like this:

names(cat_stats)[1]

[1] "age_group"

What does the dot do? Well, outside of our dplyr pipeline, it doesn’t do anything useful:

names(.)[1]

Error: object '.' not found

Inside of our dplyr pipeline, you can think of it as a placeholder for whatever is getting passed
to the dplyr verb – mutate() in this case. So, what is getting passed to mutate? The result
of everything that comes before mutate() in the pipeline. And what does that result look like
in this case? It looks like this:

study %>%
count(age_group)

# A tibble: 3 x 2
age_group n
<fct> <int>

1 Younger than 30 56
2 30 and Older 11
3 <NA> 1

So, we can use the dot inside of mutate as a substitute for the results data frame getting passed
to mutate(). Said another way. To dplyr, this:

710



names(study %>% count(age_group))

and this:

study %>% count(age_group) %>% names(.)

are the exact same thing in this context:

cat_stats <- study %>%
count(age_group) %>%
mutate(variable = names(.)[1]) %>%
print()

# A tibble: 3 x 3
age_group n variable
<fct> <int> <chr>

1 Younger than 30 56 age_group
2 30 and Older 11 age_group
3 <NA> 1 age_group

Now, we have all the variables we wanted for our final results table. Keep in mind, however,
that we will eventually be stacking similar results from our other variables (i.e., gender and
bmi_3cat) below these results using bind_rows(). You may remember from the chapter on
working with multiple data frames that the bind_rows() function matches columns together
by name, not by position. So, we need to change the age_group column name to category.
If we don’t, we will end up with something that looks like this:

study %>%
count(age_group) %>%
bind_rows(study %>% count(gender))

# A tibble: 6 x 3
age_group n gender
<fct> <int> <fct>

1 Younger than 30 56 <NA>
2 30 and Older 11 <NA>
3 <NA> 1 <NA>
4 <NA> 43 Female
5 <NA> 24 Male
6 <NA> 1 <NA>

711



Not what we want, right? Again, if we were doing this analysis one variable at a time, our
code might look like this:

cat_stats <- study %>%
count(age_group) %>%
mutate(variable = names(.)[1]) %>%
rename(category = age_group) %>%
print()

# A tibble: 3 x 3
category n variable
<fct> <int> <chr>

1 Younger than 30 56 age_group
2 30 and Older 11 age_group
3 <NA> 1 age_group

We used the rename() function above to change the name of the first column from age_group
to category. Remember, the syntax for renaming columns with the rename() function is
new_name = old_name. But, inside our for loop we will actually have 3 old names, right?
In the first iteration old_name will be age_group, in the second iteration old_name will be
gender, and in the third iteration old_name will be bmi_cat. We could loop over the names,
but there’s an even easier solution. Instead of asking rename() to rename our column by name
using this syntax, new_name = old_name, we can also ask rename() to rename our column by
position using this syntax, new_name = column_number. So, in our example above, we could
get the same result by replacing age_group with 1 because age_group is the first column in
the data frame:

cat_stats <- study %>%
count(age_group) %>%
mutate(variable = names(.)[1]) %>%
rename(category = 1) %>% # Replace age_group with 1
print()

# A tibble: 3 x 3
category n variable
<fct> <int> <chr>

1 Younger than 30 56 age_group
2 30 and Older 11 age_group
3 <NA> 1 age_group

And, using this method, we don’t have to make any changes to the value being passed to
rename() when we are analyzing our other variables. For example:

712



cat_stats <- study %>%
count(gender) %>% # Changed the column from age_group to gender
mutate(variable = names(.)[1]) %>%
rename(category = 1) %>% # Still have 1 here
print()

# A tibble: 3 x 3
category n variable
<fct> <int> <chr>

1 Female 43 gender
2 Male 24 gender
3 <NA> 1 gender

At this point, we have all the elements we need manually create the data frame of final results
we want. First, we create the empty results table:

cat_table <- tibble(
variable = vector("character"),
category = vector("character"),
n = vector("numeric")

) %>%
print()

# A tibble: 0 x 3
# i 3 variables: variable <chr>, category <chr>, n <dbl>

Then, we get the data frame of results for age_group:

cat_stats <- study %>%
count(age_group) %>%
mutate(variable = names(.)[1]) %>%
rename(category = 1) %>%
print()

# A tibble: 3 x 3
category n variable
<fct> <int> <chr>

1 Younger than 30 56 age_group
2 30 and Older 11 age_group
3 <NA> 1 age_group

713



Then, we use bind_rows() to add those results to our cat_table data frame:

cat_table <- cat_table %>%
bind_rows(cat_stats) %>%
print()

# A tibble: 3 x 3
variable category n
<chr> <chr> <dbl>

1 age_group Younger than 30 56
2 age_group 30 and Older 11
3 age_group <NA> 1

Then, we copy and paste the last two steps above, replacing age_group with gender:

cat_stats <- study %>%
count(gender) %>% # Change to gender
mutate(variable = names(.)[1]) %>%
rename(category = 1)

cat_table <- cat_table %>%
bind_rows(cat_stats) %>%
print()

# A tibble: 6 x 3
variable category n
<chr> <chr> <dbl>

1 age_group Younger than 30 56
2 age_group 30 and Older 11
3 age_group <NA> 1
4 gender Female 43
5 gender Male 24
6 gender <NA> 1

Then, we copy and paste the two steps above, replacing gender with bmi_3cat:

cat_stats <- study %>%
count(bmi_3cat) %>% # Change to bmi_3cat
mutate(variable = names(.)[1]) %>%
rename(category = 1)

714



cat_table <- cat_table %>%
bind_rows(cat_stats) %>%
print()

# A tibble: 10 x 3
variable category n
<chr> <chr> <dbl>

1 age_group Younger than 30 56
2 age_group 30 and Older 11
3 age_group <NA> 1
4 gender Female 43
5 gender Male 24
6 gender <NA> 1
7 bmi_3cat Normal 43
8 bmi_3cat Overweight 16
9 bmi_3cat Obese 5
10 bmi_3cat <NA> 4

That is exactly the final result we wanted, and you might have noticed that the only elements
of the code chunks above that changed were the column names being passed to count(). If
we can just figure out how to loop over the column names, then we can remove a ton of
unnecessary repetition from our code. Our first attempt might look like this:

for(i in c(age_group, gender, bmi_3cat)) {
study %>%

count(i) %>%
mutate(variable = names(.)[1]) %>%
rename(category = 1)

}

Error: object 'age_group' not found

However, it doesn’t work. In the code above, R is looking for and object in the global envi-
ronment called age_group. Of course, there is no object in the global environment named
age_group. Rather, there is an object in the global environment named study that has a
column named age_group.

We can get rid of that error by wrapping each column name in quotes:

715



for(i in c("age_group", "gender", "bmi_3cat")) {
study %>%

count(i) %>%
mutate(variable = names(.)[1]) %>%
rename(category = 1)

}

Error in `count()`:
! Must group by variables found in `.data`.
x Column `i` is not found.

Unfortunately, that just gives us a different error. In the code above, count() is looking for a
column named i in the study data frame. You may be wondering why i is not being converted
to "age_group", "gender", and "bmi_3cat" in the code above. The short answer is that it’s
because of tidy evaluation and data masking.

So, we need a way to iteratively pass each quoted column name to the count() function inside
our for loop body, but also let dplyr know that they are column names, not just random
character strings. Fortunately, the rlang package (which is partially imported with dplyr),
provides us with a special construct that can help us solve this problem. It’s called the .data
pronoun. Here’s how we can use it:

for(i in c("age_group", "gender", "bmi_3cat")) {
study %>%

count(.data[[i]]) %>%
mutate(variable = names(.)[1]) %>%
rename(category = 1) %>%
print()

}

# A tibble: 3 x 3
category n variable
<fct> <int> <chr>

1 Younger than 30 56 age_group
2 30 and Older 11 age_group
3 <NA> 1 age_group
# A tibble: 3 x 3
category n variable
<fct> <int> <chr>

1 Female 43 gender
2 Male 24 gender

716



3 <NA> 1 gender
# A tibble: 4 x 3
category n variable
<fct> <int> <chr>

1 Normal 43 bmi_3cat
2 Overweight 16 bmi_3cat
3 Obese 5 bmi_3cat
4 <NA> 4 bmi_3cat

Here’s how it works. Remember that data masking allows us to write column names directly
in dplyr code without having to use dollar sign or bracket notation to tell R which data frame
that column lives in. For example, in the following code, dplyr just “knows” that age_group
is a column in the study data frame:

study %>%
count(age_group)

# A tibble: 3 x 2
age_group n
<fct> <int>

1 Younger than 30 56
2 30 and Older 11
3 <NA> 1

The same is not true for base R functions. For example, we can’t pass age_group directly to
the table() function:

table(age_group)

Error: object 'age_group' not found

We have to use dollar sign or bracket notation to tell R that age_group is a column in study:

table(study[["age_group"]])

Younger than 30 30 and Older
56 11

717



This is a really nice feature of dplyr when we’re using dplyr interactively. But, as we’ve
already discussed, it does present us with some challenges when we use dplyr functions inside
of the functions we write ourselves and inside of for loops.

As you can see in the code below, the tidy evaluation essentially blocks the i inside of count()
from being replaced with each of the character strings we are looping over. Instead, dplyr
looks for a literal i as a column name in the study data frame.

for(i in c("age_group", "gender", "bmi_3cat")) {
study %>%

count(i)
}

Error in `count()`:
! Must group by variables found in `.data`.
x Column `i` is not found.

So, we need a way to tell dplyr that "age_group" is a column in the study data frame. Well,
we know how to use quoted column names inside bracket notation. So, we could write code
like this:

study %>%
count(study[["age_group"]])

# A tibble: 3 x 2
`study[["age_group"]]` n
<fct> <int>

1 Younger than 30 56
2 30 and Older 11
3 <NA> 1

However, the column name (i.e., study[["age_group"]]) in the results data frame above isn’t
ideal to work with. Additionally, the code above isn’t very flexible because we have the study
data frame hard-coded into it (i.e., study[["age_group"]]). That’s where the .data pronoun
comes to the rescue:

study %>%
count(.data[["age_group"]])

718



# A tibble: 3 x 2
age_group n
<fct> <int>

1 Younger than 30 56
2 30 and Older 11
3 <NA> 1

The .data pronoun “is not a data frame; it’s a special construct, a pronoun, that allows you
to access the current variables either directly, with .data$x or indirectly with .data[[var]].”10

When we put it all together, our code looks like this:

# Create the data frame structure that will contain our results
cat_table <- tibble(
variable = vector("character"),
category = vector("character"),
n = vector("numeric")

)

# For each column, get the column name, category names, and count.
# Then, add them to the bottom of the results data frame we created above.
for(i in c("age_group", "gender", "bmi_3cat")) {
cat_stats <- study %>%

count(.data[[i]]) %>% # Use .data to refer to the current data frame.
mutate(variable = names(.)[1]) %>% # Use . to refer to the current data frame.
rename(category = 1)

# Here is where we update cat_table with the results for each column
cat_table <- bind_rows(cat_table, cat_stats)

}

cat_table

# A tibble: 10 x 3
variable category n
<chr> <chr> <dbl>

1 age_group Younger than 30 56
2 age_group 30 and Older 11
3 age_group <NA> 1
4 gender Female 43
5 gender Male 24
6 gender <NA> 1

719



7 bmi_3cat Normal 43
8 bmi_3cat Overweight 16
9 bmi_3cat Obese 5
10 bmi_3cat <NA> 4

And, we can do other interesting things with our results now that we have it in this format.
For example, we can easily add percentages along with our counts like this:

cat_table %>%
group_by(variable) %>%
mutate(

percent = n / sum(n) * 100
)

# A tibble: 10 x 4
# Groups: variable [3]

variable category n percent
<chr> <chr> <dbl> <dbl>

1 age_group Younger than 30 56 82.4
2 age_group 30 and Older 11 16.2
3 age_group <NA> 1 1.47
4 gender Female 43 63.2
5 gender Male 24 35.3
6 gender <NA> 1 1.47
7 bmi_3cat Normal 43 63.2
8 bmi_3cat Overweight 16 23.5
9 bmi_3cat Obese 5 7.35
10 bmi_3cat <NA> 4 5.88

Finally, we could also write our own function that uses the code above. That way, we can
easily reuse this code in the future:

cat_stats <- function(data, ...) {
# Create the data frame structure that will contain our results
cat_table <- tibble(

variable = vector("character"),
category = vector("character"),
n = vector("numeric")

)

# For each column in ..., get the column name, category names, and count.

720



# Then, add them to the bottom of the results data frame we created above.
for(i in c(...)) {

stats <- data %>%
count(.data[[i]]) %>% # Use .data to refer to the current data frame.
mutate(variable = names(.)[1]) %>% # Use . to refer to the current data frame.
rename(category = 1)

# Here is where we update cat_table with the results for each column
cat_table <- bind_rows(cat_table, stats)

}
# Return results
cat_table

}

cat_stats(study, "age_group", "gender", "bmi_3cat")

# A tibble: 10 x 3
variable category n
<chr> <chr> <dbl>

1 age_group Younger than 30 56
2 age_group 30 and Older 11
3 age_group <NA> 1
4 gender Female 43
5 gender Male 24
6 gender <NA> 1
7 bmi_3cat Normal 43
8 bmi_3cat Overweight 16
9 bmi_3cat Obese 5
10 bmi_3cat <NA> 4

We covered a lot of material in this chapter. For loops tend to be confusing for people who
are just learning to program. When you throw in the tidy evaluation stuff, it can be really
confusing – even for experienced R programmers. So, if you are still feeling a little confused,
don’t beat yourself up. Also, trying to memorize everything we covered in this chapter is not
recommended. Instead, we recommend that you read it until you have understood what for
loops are and when they might be useful at a high level. Then, refer back to this chapter
(or other online references that discuss for loops) if you find yourself in a situation where you
believe that for loops might be the right tool to help you complete a given programming task.
Having said that, also keep in mind that for loops are rarely the only tool you will have at
your disposal to complete the task. In the next chapter, we will learn how to use functionals,
specifically the purrr package, in place of for loops. You may find this approach to iteration
more intuitive.

721



37 Using the purrr Package

In this final chapter of the repeated operations part of the book, we are going to discuss the
purrr package.

Figure 37.1: For loops graphic

The purrr package provides a really robust set of functions that can help us more efficiently
complete a bunch of different tasks in R. For the purposes of this chapter, however, we are
going to focus on using the purrr::map functions as an alternative approach to removing
unnecessary repetition from the various different code chunks we’ve already seen in other
chapters.

For our purposes, you can think of the purrr::map functions as a replacement for for loops.
In other words, you can think of them as doing the same thing as a for loop, but writing the
code in a different way.

722

https://purrr.tidyverse.org/


Note

We also want to mention that the purrr package is closely related to base R’s apply
functions (i.e., apply(), lapply(), sapply(), tapply()). We aren’t going to discuss
those functions any further, but you will often see them mentioned side-by-side as solu-
tions to a given coding challenge on websites like Stack Overflow. The purrr package is
partially meant to be an improved replacement for the apply functions.

As usual, let’s start by taking a look at a simple example – the same one we used to start
the chapter on column-wise operations and the chapter on writing for loops. Afterwards, we
will compare the basic structure of purrr::map functions to the basic structure of for loops.
Finally, we will work through a number of the examples we’ve already worked through in this
part of the book using the purrr approach.

At this point, we will go ahead and load dplyr and purrr and simulate our data:

library(dplyr)
library(purrr)

set.seed(123)
df_xyz <- tibble(
x = rnorm(10),
y = rnorm(10),
z = rnorm(10)

) %>%
print()

# A tibble: 10 x 3
x y z

<dbl> <dbl> <dbl>
1 -0.560 1.22 -1.07
2 -0.230 0.360 -0.218
3 1.56 0.401 -1.03
4 0.0705 0.111 -0.729
5 0.129 -0.556 -0.625
6 1.72 1.79 -1.69
7 0.461 0.498 0.838
8 -1.27 -1.97 0.153
9 -0.687 0.701 -1.14
10 -0.446 -0.473 1.25

In the chapter on column-wise operations we used dplyr’s across() function to efficiently
find the mean of each column in the df_xyz data frame:

723



df_xyz %>%
summarise(

across(
.cols = everything(),
.fns = mean,
.names = "{col}_mean"

)
)

# A tibble: 1 x 3
x_mean y_mean z_mean
<dbl> <dbl> <dbl>

1 0.0746 0.209 -0.425

In the chapter on writing for loops, we learned an alternative approach that would also work:

xyz_means <- vector("double", ncol(df_xyz))

for(i in seq_along(df_xyz)) {
xyz_means[[i]] <- mean(df_xyz[[i]])

}

xyz_means

[1] 0.07462564 0.20862196 -0.42455887

An alternative way to complete the analysis above is with the map_dbl() function from the
purrr package like this:

xyz_means <- map_dbl(
.x = df_xyz,
.f = mean

)

xyz_means

x y z
0.07462564 0.20862196 -0.42455887

�Here’s what we did above:

724



• We used purr’s map_dbl() function to iteratively calculate the mean of each column
in the df_xyz data frame. There are other map functions beside map_dbl(). We will
eventually discuss them all.

• You can type ?purrr::map_dbl into your R console to view the help documentation for
this function and follow along with the explanation below.

• The first argument to all of the map functions is the .x argument. You should pass the
name of a list, data frame, or vector that you want to iterate over to the .x argument. If
the object passed to the .x argument is a vector, then map will apply the function passed
to the .f argument (see below) to each element of the vector. If the object passed to the
.x argument is a data frame, then map will apply the function passed to the .f argument
to each column of the data frame. Above, we passed the df_xyz data frame to the .x.

• The second argument to all of the map functions is the .f argument. You should pass the
name of function, or functions, you want to apply iteratively to the object you passed to
the .x argument. In the example above, we passed the mean function to the .f argument.
Notice that we typed mean without the parentheses.

• The third argument to all of the map functions is the ... argument. In this case, the
... argument is where we pass any additional arguments to the function we passed to
the .f argument. For example, we passed the mean function to the .f argument above.
If the data frame above had missing values, we could have passed na.rm = TRUE to the
mean() function using the ... argument. We saw a similar example of this when we
were learning about across().

As you can see, using the map_dbl() package requires far less code than the for loop did, which
has at least two potential advantages. First, it’s less typing, which means less opportunity for
typos. Second, many people in the R community feel as though this functional (i.e., use of a
function) approach to iteration is much easier to read and understand than the traditional for
loop approach.

Additionally, you may have also noticed that we were able to assign the returned results of
map_dbl(df_xyz, mean) to an object in our global environment in the usual way (i.e., with
the assignment arrow). This eliminates the need for creating a structure to hold our results
ahead of time as we had to do with the for loop.

Finally, when we use map_dbl() there isn’t a leftover index variable (i.e., i) floating around
our global environment the way there was when we were writing for loops.

For those reasons, and possibly others, it’s been an observation that the majority of R users
prefer the functional approach to iteration – either purrr or the apply functions – over using
for loops in most situations.

However, some of you reading this text book might have had their first experiences with
programming in a language other than R that relied more heavily on for loops. For this
reason, you might tend to think first in terms of a for loop and then mentally convert the for

725



loop to a map function before writing your code. Therefore, the next section is going to compare
and contrast the basic for loop with the map functions. You may find this section instructive
or interesting even if you aren’t someone who first learned iteration using for loops.

37.1 Comparing for loops and the map functions

Figure 37.2: Comparing for loops and map functions

In this section, we will compare for loops and the purrr::map functions using the example
from the beginning of the chapter.

726



Figure 37.3: Comparing for loops and map functions using example

It’s probably obvious to you at this point, but when using purrr::map instead of a for loop,
we will be using one of the map functions instead of the for() function.

727



Figure 37.4: Assigning the results of map function to object

Next, as previously discussed above, we are able to assign the returned results of
map_dbl(df_xyz, mean) to an object in our global environment in the usual way (i.e.,
with the assignment arrow). This eliminates the need for creating a structure to hold
our results ahead of time as we had to do with the for loop. It also eliminates the need
to write code that explicitly updates the returned results structure at each iteration (i.e.,
xyz_means[[i]]) as we had to do with the for loop.

However, one nice byproduct of creating the structure to hold our returned results ahead of
time was that doing so made it obvious what form and type we expected our results to take.

728



Figure 37.5: Setting the type of the returned results structure I

In the xyz_means example above, it’s obvious that we expected our returned results to be a
vector of numbers because the structure we created to contain our results was a vector of type
double.

729



Figure 37.6: Setting the type of the returned results structure II

When using the purrr::map functions, which map function we choose will serve the same
purpose. In the example above, we used map_dbl(), which implied that we expected our
results to be a vector of type double. In fact, it not only implied that our results should be a
vector of type double, but it guaranteed that our results would be a vector of type double (or
we would get an error). In this sense, the map functions are much safer to use than for loops –
we don’t get unexpected results.

As a silly example, let’s say that we want to extract the number of letters in each name
contained in a vector of names. We’ll start by creating a vector that contains three random
names:

names <- c("Avril", "Joe", "Whitney")

Next, let’s create a structure to contain our results:

n_letters <- vector("double", length(names)) # Expecting double

The code above (i.e., vector("double", length(names))) implies that we expect our results
to be type double, which make sense if we expect our results to be the number of letters in
some names.

Finally, let’s write our for loop:

730



for(i in seq_along(names)) {
n_letters[[i]] <- stringr::str_extract(names[[i]], "\\w") # Returns character

}

n_letters

[1] "A" "J" "W"

Uh, oh! Those “counts” are letters! What happened? Well, apparently we thought that
stringr::str_extract(names[[i]], "\\w") would return the count of letters in each name.
In actuality, it returns the first letter in each name.

Again, this is a silly example. In this case, it’s easy to see and fix our mistake. However, it
could be very difficult to debug this problem if the code were buried in a long script or inside
of other functions.

Now, let’s see what happens when we use purrr. We still start with the names:

names <- c("Avril", "Joe", "Whitney")

We also still imply our expectations that the returned result should be a numeric vector.
However, this time we do so by using the map_dbl function:

n_letters <- map_dbl(
.x = names,
.f = stringr::str_extract, "\\w{1}"

)

Error in `map_dbl()`:
i In index: 1.
Caused by error:
! Can't coerce from a string to a double.

But, this time, we don’t get an unexpected result. This time, we get an error. This may seem
like a pain if you are newish to programming. But it’s much better to get an error that you
can go fix than an incorrect result that you are totally unaware of!

While we are discussing return types, let’s go ahead and introduce some of the other map
functions. They are:

• map_dbl(), which we’ve already seen. The map_dbl() function always returns a numeric
vector or an error.

731



• map_int(), which always returns an integer vector or an error.

• map_lgl(), which always returns a logical vector or an error.

• map_chr(), which always returns a character vector or an error.

• map_dfr(), which always returns a data frame created by row-binding results or an error.

• map_dfc(), which always returns a data frame created by column-binding results or an
error.

• map(), which is the most generic, and always returns a list (or an error). We’ve haven’t
discussed lists much in this book, but whenever something won’t fit into any other kind
of object, it will fit into a list.

• walk(), which is the only map function without a map name. We will use walk() when
we are more interested in the “side-effects” of the function passed to .f than its return
value. What in the world does that mean? It means that the only thing walk() “returns”
is exactly what was passed to its .x argument. No matter what you pass to the .f
argument, the object passed to .x will be returned by walk() unmodified. Your next
question might be, “then what’s the point? How could that ever be useful?” Typically,
walk() will only be useful to us for plotting (e.g., where you are interested in viewing the
plots, but not saving them as an object) and/or data transfer (we will see an example of
this below).

Figure 37.7: Replacing the arguments in the for function with the object we pass to the .x
argument of the map function

732



Next, the object we pass to the .x function of the map function replaces the entire i in
seq_along(object) pattern that is passed to the for loop. Again, if the object passed to the
.x argument is a vector, then map will apply the function passed to the .f argument to each
element of the vector. If the object passed to the .x argument is a data frame, then map will
apply the function passed to the .f argument to each column of the data frame.

Figure 37.8: Replacing the body of the for function with the function we pass to the .f argument
of the map function

Finally, the function passed to the .f argument can replace the rest of the “stuff” going on
in the for loop body. We can pass a single function (e.g., mean) to the .f argument as we
did above. However, we can also pass anonymous functions to the .f argument. We pass
anonymous functions to the .f function in basically the exact same way passed anonymous
functions to the .fns argument of the across() function in the chapter on column-wise
operations. And, yes, we can also write our anonymous functions using purrr-style lambdas.
In fact, the purrr-style lambda syntax is called the purrr-style lambda syntax because it was
first created for the purrr package and later adopted by dplyr::across(). That name
probably makes a lot more sense than it did a couple of chapters ago!

That pretty much covers the basics of using the purrr::map functions. If you’ve been reading
this book in sequence, there won’t really be any conceptually new material in this chapter.
We’re basically going to do the same things we’ve been doing for the last couple of chapters.
We’ll just be using a slightly different (and perhaps preferable) syntax. If you haven’t been

733



reading the book in sequence, you might want to read the chapters on writing functions,
column-wise operations, and writing for loops to get the most of the examples below.

37.2 Using purrr for data transfer

37.2.1 Example 1: Importing multiple sheets from an Excel workbook

In the chapter on writing functions we used a for loop to help us import data from an Excel
workbook that was stored across multiple sheets. We will once again go through this example
using the purrr approach.

The simulated data contains some demographic information about three different cities: Hous-
ton, Atlanta, and Charlotte. In this scenario, we need to import each sheet, clean the data,
and combine them into a single data frame in order to complete our analysis. First, we will
load the readxl package:

library(readxl)

You may click here to download this file to your computer.

Then, we may import each sheet like this:

houston <- read_excel(
"city_ses.xlsx",
sheet = "Houston"

)

atlanta <- read_excel(
"city_ses.xlsx",
sheet = "Atlanta"

)

charlotte <- read_excel(
"city_ses.xlsx",
sheet = "Charlotte"

)

�In the code chunks above, we have essentially the same code copied more than twice. That’s
a red flag that we should be thinking about removing unnecessary repetition from our code.
So, our next step was to write a function to remove some of the unnecessary repetition:

734

https://github.com/brad-cannell/r4epi/blob/master/data/city_ses.xlsx


import_cities <- function(sheet) {
df <- read_excel(

"city_ses.xlsx",
sheet = sheet

)
}

houston <- import_cities("Houston")
atlanta <- import_cities("Atlanta")
charlotte <- import_cities("Charlotte")

�However, that approach still has some repetition. So, we next learned how to use a for loop
as an alternative approach:

path <- "city_ses.xlsx"
sheets <- excel_sheets(path)

for(i in seq_along(sheets)) {
new_nm <- tolower(sheets[[i]])
assign(new_nm, read_excel(path, sheet = sheets[[i]]))

}

That works just fine! However, we could alternatively use purrr::walk() instead like this:

# Save the file path to an object so we don't have to type it repeatedly
# or hard-code it in.
path <- "city_ses.xlsx"

walk(
.x = excel_sheets(path),
.f = function(x) {

new_nm <- tolower(x)
assign(new_nm, read_excel(path, sheet = x), envir = .GlobalEnv)

}
)

houston

# A tibble: 5 x 4
pid age sex ses_score
<chr> <dbl> <chr> <dbl>

735



1 001 13 F 88
2 003 13 F 78
3 007 14 M 83
4 014 12 F 76
5 036 13 M 84

atlanta

# A tibble: 5 x 4
id age gender ses_score
<chr> <dbl> <chr> <dbl>

1 002 14 M 64
2 009 15 M 35
3 012 13 F 70
4 013 13 F 66
5 022 12 F 59

charlotte

# A tibble: 5 x 4
pid age sex ses
<chr> <dbl> <chr> <dbl>

1 004 13 F 84
2 011 14 M 66
3 018 12 M 92
4 023 12 M 89
5 030 13 F 83

�Here’s what we did above:

• We used the walk() function from the purrr package to import every sheet from an
Excel workbook.

• First, we saved the path to the Excel workbook to a separate object. We didn’t have
to do this. However, doing so prevented us from having to type out the full file path
repeatedly in the rest of our code. Additionally, if the file path ever changed, we would
only have to update it in one place.

• Second, we passed the return value of the excel_sheets() function, which is a character
vector containing each sheet name, to the .x argument of the walk() function. We
didn’t have to do this. We could have typed each sheet name manually. However, there
shouldn’t be any accidental typos if we use the excel_sheets() function, and we don’t
have to make any changes to our code if more sheets are added to the Workbook in the
future.

736



• Third, we passed an anonymous function to the walk()’s .f argument. Inside the anony-
mous function, we assigned each data frame created by the read_excel() function to
our global environment using the assign() function. Notice that because we are us-
ing the assign() inside of another function, we have to explicitly tell the assign()
function to assign the data frames being imported to the global environment using
envir = .GlobalEnv. Without getting too technical, keep in mind that functions create
their own little enclosed environments (see a discussion here), which makes the envir =
.GlobalEnv part necessary.

Additionally, you may have some questions swirling around your head right now about the
walk() function itself. In particular, you might be wondering why we used walk() instead of
map() and why we didn’t assign the return value of walk() to an object. We’ll answer both
questions next.

37.2.2 Why walk instead of map?

The short answer is that map functions return one thing (i.e., a vector, list, or data frame). In
this situation, we wanted to “return” three things (i.e., the houston data frame, the atlanta
data frame, and the charlotte data frame).

Technically, we could have used the map() function to return a list of data frames like this:

list_of_df <- map(
.x = excel_sheets(path),
.f = ~ read_excel(path, sheet = .x)

)

str(list_of_df)

List of 3
$ : tibble [5 x 4] (S3: tbl_df/tbl/data.frame)
..$ pid : chr [1:5] "001" "003" "007" "014" ...
..$ age : num [1:5] 13 13 14 12 13
..$ sex : chr [1:5] "F" "F" "M" "F" ...
..$ ses_score: num [1:5] 88 78 83 76 84
$ : tibble [5 x 4] (S3: tbl_df/tbl/data.frame)
..$ id : chr [1:5] "002" "009" "012" "013" ...
..$ age : num [1:5] 14 15 13 13 12
..$ gender : chr [1:5] "M" "M" "F" "F" ...
..$ ses_score: num [1:5] 64 35 70 66 59
$ : tibble [5 x 4] (S3: tbl_df/tbl/data.frame)
..$ pid: chr [1:5] "004" "011" "018" "023" ...

737



..$ age: num [1:5] 13 14 12 12 13

..$ sex: chr [1:5] "F" "M" "M" "M" ...

..$ ses: num [1:5] 84 66 92 89 83

From there, we could extract and modify each data frame from the list like this:

houston <- list_of_df[[1]]
houston

# A tibble: 5 x 4
pid age sex ses_score
<chr> <dbl> <chr> <dbl>

1 001 13 F 88
2 003 13 F 78
3 007 14 M 83
4 014 12 F 76
5 036 13 M 84

atlanta <- list_of_df[[2]]
atlanta

# A tibble: 5 x 4
id age gender ses_score
<chr> <dbl> <chr> <dbl>

1 002 14 M 64
2 009 15 M 35
3 012 13 F 70
4 013 13 F 66
5 022 12 F 59

charlotte <- list_of_df[[2]]
charlotte

# A tibble: 5 x 4
id age gender ses_score
<chr> <dbl> <chr> <dbl>

1 002 14 M 64
2 009 15 M 35
3 012 13 F 70
4 013 13 F 66
5 022 12 F 59

738



Of course, now we have a bunch of repetition again! Alternatively, we could have also used
the map_dfr(), which always returns a data frame created by row-binding results or an error.
You can think of map_dfr() as taking the three data frames above and passing them to the
bind_rows() function and returning that result:

# Passing list_of_df to bind_rows()
bind_rows(list_of_df)

# A tibble: 15 x 7
pid age sex ses_score id gender ses
<chr> <dbl> <chr> <dbl> <chr> <chr> <dbl>

1 001 13 F 88 <NA> <NA> NA
2 003 13 F 78 <NA> <NA> NA
3 007 14 M 83 <NA> <NA> NA
4 014 12 F 76 <NA> <NA> NA
5 036 13 M 84 <NA> <NA> NA
6 <NA> 14 <NA> 64 002 M NA
7 <NA> 15 <NA> 35 009 M NA
8 <NA> 13 <NA> 70 012 F NA
9 <NA> 13 <NA> 66 013 F NA
10 <NA> 12 <NA> 59 022 F NA
11 004 13 F NA <NA> <NA> 84
12 011 14 M NA <NA> <NA> 66
13 018 12 M NA <NA> <NA> 92
14 023 12 M NA <NA> <NA> 89
15 030 13 F NA <NA> <NA> 83

# Using map_dfr() to directly produce the same result
cities <- map_dfr(
.x = excel_sheets(path),
.f = ~ read_excel(path, sheet = .x)

)

cities

# A tibble: 15 x 7
pid age sex ses_score id gender ses
<chr> <dbl> <chr> <dbl> <chr> <chr> <dbl>

1 001 13 F 88 <NA> <NA> NA
2 003 13 F 78 <NA> <NA> NA
3 007 14 M 83 <NA> <NA> NA

739



4 014 12 F 76 <NA> <NA> NA
5 036 13 M 84 <NA> <NA> NA
6 <NA> 14 <NA> 64 002 M NA
7 <NA> 15 <NA> 35 009 M NA
8 <NA> 13 <NA> 70 012 F NA
9 <NA> 13 <NA> 66 013 F NA
10 <NA> 12 <NA> 59 022 F NA
11 004 13 F NA <NA> <NA> 84
12 011 14 M NA <NA> <NA> 66
13 018 12 M NA <NA> <NA> 92
14 023 12 M NA <NA> <NA> 89
15 030 13 F NA <NA> <NA> 83

There would be absolutely nothing wrong with taking this approach and then cleaning up the
combined data you see above. However, in this case, the preference was to import each sheet
as a separate data frame, clean up each separate data frame, and then combine ourselves. If
your preference is to use map_dfr() instead, then you definitely should.

37.2.3 why we didn’t assign the return value of walk() to an object?

As we discussed above, the only thing walk() “returns” is exactly what was passed to its .x
argument. No matter what you pass to the .f argument, the object passed to .x will be
returned by walk() unmodified. In this case, that would just be the sheet names:

returned_by_walk <- walk(
.x = excel_sheets(path),
.f = function(x) {

new_nm <- tolower(x)
assign(new_nm, read_excel(path, sheet = x), envir = .GlobalEnv)

}
)

returned_by_walk

[1] "Houston" "Atlanta" "Charlotte"

Don’t be confused, the data frames are still being imported and assigned to the global environ-
ment via the anonymous function we passed to .f above. But, but those data frames aren’t
the values returned by walk() – They are a side-effect of the operations taking place inside of
walk().

740



Finally, we could make our original walk() code slightly more concise by using the purrr-style
lambda syntax to write our anonymous function like this:

path <- "city_ses.xlsx"

walk(
.x = excel_sheets(path),
.f = ~ assign(tolower(.), read_excel(path, sheet = .), envir = .GlobalEnv)

)

houston

# A tibble: 5 x 4
pid age sex ses_score
<chr> <dbl> <chr> <dbl>

1 001 13 F 88
2 003 13 F 78
3 007 14 M 83
4 014 12 F 76
5 036 13 M 84

atlanta

# A tibble: 5 x 4
id age gender ses_score
<chr> <dbl> <chr> <dbl>

1 002 14 M 64
2 009 15 M 35
3 012 13 F 70
4 013 13 F 66
5 022 12 F 59

charlotte

# A tibble: 5 x 4
pid age sex ses
<chr> <dbl> <chr> <dbl>

1 004 13 F 84
2 011 14 M 66
3 018 12 M 92
4 023 12 M 89
5 030 13 F 83

741



37.3 Using purrr for data management

37.3.1 Example 1: Adding NA at multiple positions

We’ll start this section with a relatively simple example using the same data we used to start
the chapter on column-wise operations and the chapter on writing for loops.

set.seed(123)
df_xyz <- tibble(
x = rnorm(10),
y = rnorm(10),
z = rnorm(10)

) %>%
print()

# A tibble: 10 x 3
x y z

<dbl> <dbl> <dbl>
1 -0.560 1.22 -1.07
2 -0.230 0.360 -0.218
3 1.56 0.401 -1.03
4 0.0705 0.111 -0.729
5 0.129 -0.556 -0.625
6 1.72 1.79 -1.69
7 0.461 0.498 0.838
8 -1.27 -1.97 0.153
9 -0.687 0.701 -1.14
10 -0.446 -0.473 1.25

In those chapters, we used the code below to add missing values to our data frame:

df_xyz$x[2] <- NA_real_
df_xyz$y[4] <- NA_real_
df_xyz$z[6] <- NA_real_
df_xyz

# A tibble: 10 x 3
x y z

<dbl> <dbl> <dbl>
1 -0.560 1.22 -1.07
2 NA 0.360 -0.218

742



3 1.56 0.401 -1.03
4 0.0705 NA -0.729
5 0.129 -0.556 -0.625
6 1.72 1.79 NA
7 0.461 0.498 0.838
8 -1.27 -1.97 0.153
9 -0.687 0.701 -1.14
10 -0.446 -0.473 1.25

Dealing with those missing values, rather than adding those missing values was the point of
the previously mentioned examples. So, we ignored the unnecessary repetition in the code
above. But, for all the reasons we’ve been discussing, we should strive to write more robust
code. Imagine, for example, that you were adding missing data to hundreds or thousands of
rows as part of a simulation study. Using the method above would become problematic pretty
quickly.

In this case, it might be useful to start our solution with writing a function (click here to
review function writing). Let’s name our function add_na_at() because it helps us add an NA
value to a vector at a position of our choosing. Logically, then, it follows that we will need to
be able to pass our function a vector that we want to add the NA value to, and a position to
add the NA value at. So, our first attempt might look something like this:

add_na_at <- function(vect, pos) {
vect[[pos]] <- NA

}

Let’s test it out:

add_na_at(df_xyz$x, 2) %>% print()

[1] NA

Is a single NA the result we wanted? Nope! If this result is surprising to you, please review the
section of the writing functions chapter on return values. Briefly, the last line of our function
body is the single value df_xyz$x[[2]], which was set to be equal to NA. But, we don’t want
our function to return just one position of the vector – we want it to return the entire vector.
So, let’s reference the entire vector on the last line of the function body:

add_na_at <- function(vect, pos) {
vect[[pos]] <- NA
vect

}

743



add_na_at(df_xyz$x, 2)

[1] -0.56047565 NA 1.55870831 0.07050839 0.12928774 1.71506499
[7] 0.46091621 -1.26506123 -0.68685285 -0.44566197

That’s better! Again, we know that data frame columns are vectors, so we can use our new
function inside of mutate to add NA values to each column in our data frame at a position of
our choosing:

df_xyz %>%
mutate(

x = add_na_at(x, 2),
y = add_na_at(y, 4),
z = add_na_at(z, 6)

)

# A tibble: 10 x 3
x y z

<dbl> <dbl> <dbl>
1 -0.560 1.22 -1.07
2 NA 0.360 -0.218
3 1.56 0.401 -1.03
4 0.0705 NA -0.729
5 0.129 -0.556 -0.625
6 1.72 1.79 NA
7 0.461 0.498 0.838
8 -1.27 -1.97 0.153
9 -0.687 0.701 -1.14
10 -0.446 -0.473 1.25

I can hear what you are saying now. “Sure, that’s the result we wanted, but we didn’t eliminate
very much repetitive code.” You are not wrong. A case could be made that this code is easier
to quickly glance at and understand, but it isn’t much less repetitive. That’s where purrr
comes in. Let’s try using purrr to come up with a better solution now.

The first question we might ask ourselves is, “which map function should we choose?” Well,
we know we want our end result to be a data frame, so it makes sense for us to choose either
map_dfr or map_dfc. However, it might be useful to start with the plain map() function that
returns a list as we begin to experiment with solving a problem using purrr. This is because
R can put almost anything into a list, and therefore, we will almost always get something

744



returned to us (as opposed to an error) by map(). Further, the thing returned to us typically
can provide us with some insight into what’s going on inside .f.

Next, we know that we want to iterate over every column of the df_xyz data frame. So, we
can pass it to the .x argument.

We also know that we want each column to get passed to the vect argument of add_na_at()
iteratively. So, we want to pass add_na_at (without parentheses) to the .f argument.

Finally, we can’t supply add_na_at() with just one argument – the vector – can we?

add_na_at(df_xyz$x)

Error in vect[[pos]] <- NA: missing subscript

No way! We have to give it position as well. Do you remember which argument allows us to
pass any additional arguments to the function we passed to the .f argument?

The ... argument is where we pass any additional arguments to the function we passed to the
.f argument. But remember, we don’t actually type out ... =. We simply type additional
arguments, separated by commas, after the function name supplied to .f:

map(
.x = df_xyz,
.f = add_na_at, 2

)

$x
[1] -0.56047565 NA 1.55870831 0.07050839 0.12928774 1.71506499
[7] 0.46091621 -1.26506123 -0.68685285 -0.44566197

$y
[1] 1.2240818 NA 0.4007715 NA -0.5558411 1.7869131
[7] 0.4978505 -1.9666172 0.7013559 -0.4727914

$z
[1] -1.0678237 NA -1.0260044 -0.7288912 -0.6250393 NA
[7] 0.8377870 0.1533731 -1.1381369 1.2538149

Or alternatively, we can use the purrr-style lambda to pass our function to .f:

745



map(
.x = df_xyz,
.f = ~ add_na_at(.x, 2)

)

$x
[1] -0.56047565 NA 1.55870831 0.07050839 0.12928774 1.71506499
[7] 0.46091621 -1.26506123 -0.68685285 -0.44566197

$y
[1] 1.2240818 NA 0.4007715 NA -0.5558411 1.7869131
[7] 0.4978505 -1.9666172 0.7013559 -0.4727914

$z
[1] -1.0678237 NA -1.0260044 -0.7288912 -0.6250393 NA
[7] 0.8377870 0.1533731 -1.1381369 1.2538149

Notice that we have to use the special .x symbol inside the function call where we would
normally want to type the name of the column we want the function to operate on. We saw
something similar before in the chapter on column-wise operations.

Now, let’s discuss the result we are getting. The result you see above is a list, which is what
map() will always return to us. Specifically, this is a list with three elements – x, y, and z.
Each element of the list is a vector of numbers. Does this feel familiar? Does it seem sort of
similar to a data frame? If so, good intuition! In R, a data frame is a list. It’s simply a special
case of a list. It’s a special case because all vectors in the data frame must have the length,
and because R knows to print each vector to the screen as a column. In fact, we can easily
convert the list above to a data frame by passing it to the as.data.frame() function:

map(
.x = df_xyz,
.f = ~ add_na_at(.x, 2)

) %>%
as.data.frame()

x y z
1 -0.56047565 1.2240818 -1.0678237
2 NA NA NA
3 1.55870831 0.4007715 -1.0260044
4 0.07050839 NA -0.7288912
5 0.12928774 -0.5558411 -0.6250393

746



6 1.71506499 1.7869131 NA
7 0.46091621 0.4978505 0.8377870
8 -1.26506123 -1.9666172 0.1533731
9 -0.68685285 0.7013559 -1.1381369
10 -0.44566197 -0.4727914 1.2538149

Alternatively, we could just use map_dfc as a shortcut instead:

map_dfc(
.x = df_xyz,
.f = ~ add_na_at(.x, 2)

)

# A tibble: 10 x 3
x y z

<dbl> <dbl> <dbl>
1 -0.560 1.22 -1.07
2 NA NA NA
3 1.56 0.401 -1.03
4 0.0705 NA -0.729
5 0.129 -0.556 -0.625
6 1.72 1.79 NA
7 0.461 0.498 0.838
8 -1.27 -1.97 0.153
9 -0.687 0.701 -1.14
10 -0.446 -0.473 1.25

Why map_dfc instead of map_dfr? Because we want to combine x, y, and z together as
columns, not as rows.

Ok, so we almost have the solution we want. There’s just one problem. In the code above,
the NA is always being put into the second position because we have 2 hard-coded into
add_na_at(.x, 2). We need a way to iterate over our columns and a set of numbers si-
multaneously in order to get the final result we want. Fortunately, that’s exactly what the
map2 variants (i.e., map2_dbl(), map2_int(), map2_lgl(), etc.) of each of the map functions
allows us to do.

Instead of supplying map a single object to iterate over (i.e., .x) we can supply it with two
objects to iterate over (i.e., .x and .y):

747



map2_dfc(
.x = df_xyz,
.y = c(2, 4, 6),
.f = ~ add_na_at(.x, .y)

)

# A tibble: 10 x 3
x y z

<dbl> <dbl> <dbl>
1 -0.560 1.22 -1.07
2 NA 0.360 -0.218
3 1.56 0.401 -1.03
4 0.0705 NA -0.729
5 0.129 -0.556 -0.625
6 1.72 1.79 NA
7 0.461 0.498 0.838
8 -1.27 -1.97 0.153
9 -0.687 0.701 -1.14
10 -0.446 -0.473 1.25

This can sometimes take a second to wrap your mind around. Here’s an illustration that may
help:

748



Figure 37.9: Illustrating how map iterates over two objects simultaneously - I

In the first iteration, .x took on the value of the first column in the df_xyz data frame (i.e.,
x) and .y took on the value of the first element in the numeric vector that we passed to the
.y argument (i.e., 2). Then, the .x and .y were replaced with df_xyz$x and 2 respectively in
the function we passed to .f. The result of that iteration was a vector of numbers that was
identical to df_xyz$x except that its second element was an NA.

749



Figure 37.10: Illustrating how map iterates over two objects simultaneously - II

In the second iteration, .x took on the value of the second column in the df_xyz data frame
(i.e., y) and .y took on the value of the second element in the numeric vector that we passed to
the .y argument (i.e., 4). Then, the .x and .y were replaced with df_xyz$y and 4 respectively
in the function we passed to .f. The result of that iteration was a vector of numbers that was
identical to df_xyz$y except that its fourth element was an NA.

750



Figure 37.11: Illustrating how map iterates over two objects simultaneously - III

In the third iteration, .x took on the value of the third column in the df_xyz data frame (i.e.,
z) and .y took on the value of the third element in the numeric vector that we passed to the
.y argument (i.e., 6). Then, the .x and .y were replaced with df_xyz$z and 6 respectively in
the function we passed to .f. The result of that iteration was a vector of numbers that was
identical to df_xyz$z except that its sixth element was an NA.

Finally, map2_dfc() passed all of these vectors to bind_cols() (invisibly to us) and returned
them as a data frame.

The code above gives us our entire solution. But, if we really were using this code in a
simulation with hundreds or thousands of columns, we probably wouldn’t want to manually
supply a vector of column positions to the .y argument. Instead, we could use the sample()
function to supply random column positions to the .y argument like this:

set.seed(8142020)

map2_dfc(
.x = df_xyz,
.y = sample(1:10, 3, TRUE),
.f = ~ add_na_at(.x, .y)

)

751



# A tibble: 10 x 3
x y z

<dbl> <dbl> <dbl>
1 -0.560 NA -1.07
2 NA 0.360 -0.218
3 1.56 0.401 -1.03
4 0.0705 NA -0.729
5 0.129 -0.556 -0.625
6 1.72 1.79 NA
7 0.461 0.498 0.838
8 -1.27 -1.97 NA
9 NA 0.701 -1.14

10 -0.446 -0.473 1.25

Pretty nice, right?

Before moving on, note that we did not have to create the add_na_at() function ahead of time
the way we did. If we didn’t think we would need to use add_na_at() in any other part of our
program, we might have decided to pass the code inside of add_na_at() to the .f argument
as an anonymous function instead.

As a reminder, here is what our named function looks like:

add_na_at <- function(vect, pos) {
vect[[pos]] <- NA
vect

}

And here is what our purrr code would look like if we used an anonymous function instead:

map2_dfc(
.x = df_xyz,
.y = c(2, 4, 6),
.f = function(vect, pos) {

vect[[pos]] <- NA
vect

}
)

# A tibble: 10 x 3
x y z

<dbl> <dbl> <dbl>

752



1 -0.560 1.22 -1.07
2 NA 0.360 -0.218
3 1.56 0.401 -1.03
4 0.0705 NA -0.729
5 0.129 -0.556 -0.625
6 1.72 1.79 NA
7 0.461 0.498 0.838
8 -1.27 -1.97 0.153
9 -0.687 0.701 -1.14
10 -0.446 -0.473 1.25

Or, if we used a purrr-style lambda anonymous function instead:

map2_dfc(
.x = df_xyz,
.y = c(2, 4, 6),
.f = ~ {

.x[[.y]] <- NA

.x
}

)

# A tibble: 10 x 3
x y z

<dbl> <dbl> <dbl>
1 -0.560 1.22 -1.07
2 NA 0.360 -0.218
3 1.56 0.401 -1.03
4 0.0705 NA -0.729
5 0.129 -0.556 -0.625
6 1.72 1.79 NA
7 0.461 0.498 0.838
8 -1.27 -1.97 0.153
9 -0.687 0.701 -1.14
10 -0.446 -0.473 1.25

Whichever style you choose to use is largely just a matter of preference in this case (as it is in
many cases).

753



37.3.2 Example 2. Detecting matching values by position

In the chapter on writing functions, we created an is_match() function. In that scenario,
we wanted to see if first name, last name, and street name matched at each ID between our
data frames. More specifically, we wanted to combine the two data frames into a single data
frame and create three new dummy variables that indicated whether first name, last name,
and address matched respectively.

Here are the data frames we simulated and combined:

people_1 <- tribble(
~id_1, ~name_first_1, ~name_last_1, ~street_1,
1, "Easton", NA, "Alameda",
2, "Elias", "Salazar", "Crissy Field",
3, "Colton", "Fox", "San Bruno",
4, "Cameron", "Warren", "Nottingham",
5, "Carson", "Mills", "Jersey",
6, "Addison", "Meyer", "Tingley",
7, "Aubrey", "Rice", "Buena Vista",
8, "Ellie", "Schmidt", "Division",
9, "Robert", "Garza", "Red Rock",
10, "Stella", "Daniels", "Holland"

)

people_2 <- tribble(
~id_2, ~name_first_2, ~name_last_2, ~street_2,
1, "Easton", "Stone", "Alameda",
2, "Elas", "Salazar", "Field",
3, NA, "Fox", NA,
4, "Cameron", "Waren", "Notingham",
5, "Carsen", "Mills", "Jersey",
6, "Adison", NA, NA,
7, "Aubrey", "Rice", "Buena Vista",
8, NA, "Schmidt", "Division",
9, "Bob", "Garza", "Red Rock",
10, "Stella", NA, "Holland"

)

people <- people_1 %>%
bind_cols(people_2) %>%
print()

# A tibble: 10 x 8

754



id_1 name_first_1 name_last_1 street_1 id_2 name_first_2 name_last_2
<dbl> <chr> <chr> <chr> <dbl> <chr> <chr>

1 1 Easton <NA> Alameda 1 Easton Stone
2 2 Elias Salazar Crissy Field 2 Elas Salazar
3 3 Colton Fox San Bruno 3 <NA> Fox
4 4 Cameron Warren Nottingham 4 Cameron Waren
5 5 Carson Mills Jersey 5 Carsen Mills
6 6 Addison Meyer Tingley 6 Adison <NA>
7 7 Aubrey Rice Buena Vista 7 Aubrey Rice
8 8 Ellie Schmidt Division 8 <NA> Schmidt
9 9 Robert Garza Red Rock 9 Bob Garza

10 10 Stella Daniels Holland 10 Stella <NA>
# i 1 more variable: street_2 <chr>

Here is the function we wrote to help us create the dummy variables:

is_match <- function(value_1, value_2) {
result <- value_1 == value_2
result <- if_else(is.na(result), FALSE, result)
result

}

And here is how we applied the function we wrote to get our results:

people %>%
mutate(

name_first_match = is_match(name_first_1, name_first_2),
name_last_match = is_match(name_last_1, name_last_2),
street_match = is_match(street_1, street_2)

) %>%
# Order like columns next to each other for easier comparison
select(id_1, starts_with("name_f"), starts_with("name_l"), starts_with("s"))

# A tibble: 10 x 10
id_1 name_first_1 name_first_2 name_first_match name_last_1 name_last_2

<dbl> <chr> <chr> <lgl> <chr> <chr>
1 1 Easton Easton TRUE <NA> Stone
2 2 Elias Elas FALSE Salazar Salazar
3 3 Colton <NA> FALSE Fox Fox
4 4 Cameron Cameron TRUE Warren Waren
5 5 Carson Carsen FALSE Mills Mills

755



6 6 Addison Adison FALSE Meyer <NA>
7 7 Aubrey Aubrey TRUE Rice Rice
8 8 Ellie <NA> FALSE Schmidt Schmidt
9 9 Robert Bob FALSE Garza Garza
10 10 Stella Stella TRUE Daniels <NA>
# i 4 more variables: name_last_match <lgl>, street_1 <chr>, street_2 <chr>,
# street_match <lgl>

�However, in the code chunk above, we still have essentially the same code copied more than
twice. That’s a red flag that we should be thinking about removing unnecessary repetition
from our code. Because we are using dplyr, and all of our data resides inside of a single data
frame, your first instinct might be to use across() inside of mutate() to perform column-wise
operations. Unfortunately, that method won’t work in this scenario.

The across() function will apply the function we pass to the .fns argument to each column
passed to the .cols argument, one at a time. But, we need to pass two columns at a time to
the is_match() function. For example, name_first_1 and name_first_2. That makes this
task a little trickier than most. But, here’s how we accomplished it using a for loop:

cols <- c("name_first", "name_last", "street")

for(i in seq_along(cols)) {
col_1 <- paste0(cols[[i]], "_1")
col_2 <- paste0(cols[[i]], "_2")
new_col <- paste0(cols[[i]], "_match")
people[[new_col]] <- is_match(people[[col_1]], people[[col_2]])

}

people %>%
select(id_1, starts_with("name_f"), starts_with("name_l"), starts_with("s"))

# A tibble: 10 x 10
id_1 name_first_1 name_first_2 name_first_match name_last_1 name_last_2

<dbl> <chr> <chr> <lgl> <chr> <chr>
1 1 Easton Easton TRUE <NA> Stone
2 2 Elias Elas FALSE Salazar Salazar
3 3 Colton <NA> FALSE Fox Fox
4 4 Cameron Cameron TRUE Warren Waren
5 5 Carson Carsen FALSE Mills Mills
6 6 Addison Adison FALSE Meyer <NA>
7 7 Aubrey Aubrey TRUE Rice Rice
8 8 Ellie <NA> FALSE Schmidt Schmidt

756



9 9 Robert Bob FALSE Garza Garza
10 10 Stella Stella TRUE Daniels <NA>
# i 4 more variables: name_last_match <lgl>, street_1 <chr>, street_2 <chr>,
# street_match <lgl>

Now, let’s go over one way to get the same result using purrr. The first method very closely
resembles our for loop. In fact, we will basically just copy and paste our for loop body into an
anonymous function being passed to the .f argument:

map_dfc(
.x = c("name_first", "name_last", "street"),
.f = function(col, data = people) {

col_1 <- paste0(col, "_1")
col_2 <- paste0(col, "_2")
new_nm <- paste0(col, "_match")
data[[new_nm]] <- data[[col_1]] == data[[col_2]]
data[[new_nm]] <- if_else(is.na(data[[new_nm]]), FALSE, data[[new_nm]])
data[c(col_1, col_2, new_nm)]

}
)

# A tibble: 10 x 9
name_first_1 name_first_2 name_first_match name_last_1 name_last_2
<chr> <chr> <lgl> <chr> <chr>

1 Easton Easton TRUE <NA> Stone
2 Elias Elas FALSE Salazar Salazar
3 Colton <NA> FALSE Fox Fox
4 Cameron Cameron TRUE Warren Waren
5 Carson Carsen FALSE Mills Mills
6 Addison Adison FALSE Meyer <NA>
7 Aubrey Aubrey TRUE Rice Rice
8 Ellie <NA> FALSE Schmidt Schmidt
9 Robert Bob FALSE Garza Garza
10 Stella Stella TRUE Daniels <NA>
# i 4 more variables: name_last_match <lgl>, street_1 <chr>, street_2 <chr>,
# street_match <lgl>

In the code above, we used roughly the same amount of code to complete the task with a loop
that we used to complete it without a loop. However, this code still has some advantages. We
only typed “name_first”, “name_last”, and “street” once at the beginning of the code chunk.
Therefore, we didn’t have to worry about forgetting to change a column name after copying

757



and pasting code. Additionally, if we later decide that we also want to compare other columns
(e.g., middle name, birth date, city, state, zip code), we only have to update the code in one
place – where we create the cols vector.

37.4 Using purrr for analysis

Let’s return to the examples from the column-wise operations chapter and the chapter on
writing for loops for our discussion of using the purrr package to remove unnecessary repetition
from our analyses. We will once again use the simulated for the examples below.

study <- tibble(
age = c(32, 30, 32, 29, 24, 38, 25, 24, 48, 29, 22, 29, 24, 28, 24, 25,

25, 22, 25, 24, 25, 24, 23, 24, 31, 24, 29, 24, 22, 23, 26, 23,
24, 25, 24, 33, 27, 25, 26, 26, 26, 26, 26, 27, 24, 43, 25, 24,
27, 28, 29, 24, 26, 28, 25, 24, 26, 24, 26, 31, 24, 26, 31, 34,
26, 25, 27, NA),

age_group = c(2, 2, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1,
1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2,
2, 1, 1, 1, NA),

gender = c(2, 1, 1, 2, 1, 1, 1, 2, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1,
1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1,
1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 1, 1, 2, 1, 2, 1,
1, 1, 2, 1, NA),

ht_in = c(70, 63, 62, 67, 67, 58, 64, 69, 65, 68, 63, 68, 69, 66, 67, 65,
64, 75, 67, 63, 60, 67, 64, 73, 62, 69, 67, 62, 68, 66, 66, 62,
64, 68, NA, 68, 70, 68, 68, 66, 71, 61, 62, 64, 64, 63, 67, 66,
69, 76, NA, 63, 64, 65, 65, 71, 66, 65, 65, 71, 64, 71, 60, 62,
61, 69, 66, NA),

wt_lbs = c(216, 106, 145, 195, 143, 125, 138, 140, 158, 167, 145, 297, 146,
125, 111, 125, 130, 182, 170, 121, 98, 150, 132, 250, 137, 124,
186, 148, 134, 155, 122, 142, 110, 132, 188, 176, 188, 166, 136,
147, 178, 125, 102, 140, 139, 60, 147, 147, 141, 232, 186, 212,
110, 110, 115, 154, 140, 150, 130, NA, 171, 156, 92, 122, 102,
163, 141, NA),

bmi = c(30.99, 18.78, 26.52, 30.54, 22.39, 26.12, 23.69, 20.67, 26.29,
25.39, 25.68, 45.15, 21.56, 20.17, 17.38, 20.8, 22.31, 22.75,
26.62, 21.43, 19.14, 23.49, 22.66, 32.98, 25.05, 18.31, 29.13,
27.07, 20.37, 25.01, 19.69, 25.97, 18.88, 20.07, NA, 26.76,
26.97, 25.24, 20.68, 23.72, 24.82, 23.62, 18.65, 24.03, 23.86,
10.63, 23.02, 23.72, 20.82, 28.24, NA, 37.55, 18.88, 18.3,

758



19.13, 21.48, 22.59, 24.96, 21.63, NA, 29.35, 21.76, 17.97,
22.31, 19.27, 24.07, 22.76, NA),

bmi_3cat = c(3, 1, 2, 3, 1, 2, 1, 1, 2, 2, 2, 3, 1, 1, 1, 1, 1, 1, 2, 1, 1,
1, 1, 3, 2, 1, 2, 2, 1, 2, 1, 2, 1, 1, NA, 2, 2, 2, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 2, NA, 3, 1, 1, 1, 1, 1, 1, 1, NA, 2, 1,
1, 1, 1, 1, 1, NA)

) %>%
mutate(

age_group = factor(age_group, labels = c("Younger than 30", "30 and Older")),
gender = factor(gender, labels = c("Female", "Male")),
bmi_3cat = factor(bmi_3cat, labels = c("Normal", "Overweight", "Obese"))

) %>%
print()

# A tibble: 68 x 7
age age_group gender ht_in wt_lbs bmi bmi_3cat

<dbl> <fct> <fct> <dbl> <dbl> <dbl> <fct>
1 32 30 and Older Male 70 216 31.0 Obese
2 30 30 and Older Female 63 106 18.8 Normal
3 32 30 and Older Female 62 145 26.5 Overweight
4 29 Younger than 30 Male 67 195 30.5 Obese
5 24 Younger than 30 Female 67 143 22.4 Normal
6 38 30 and Older Female 58 125 26.1 Overweight
7 25 Younger than 30 Female 64 138 23.7 Normal
8 24 Younger than 30 Male 69 140 20.7 Normal
9 48 30 and Older Male 65 158 26.3 Overweight
10 29 Younger than 30 Male 68 167 25.4 Overweight
# i 58 more rows

37.4.1 Example 1: Continuous statistics

In this first example, we will use purrr to calculate a set of statistics for multiple continuous
variables in our data frame. We will start by creating the same function we created at the
beginning of the chapter on writing functions.

continuous_stats <- function(var) {
study %>%

summarise(
n_miss = sum(is.na({{ var }})),
mean = mean({{ var }}, na.rm = TRUE),
median = median({{ var }}, na.rm = TRUE),

759



min = min({{ var }}, na.rm = TRUE),
max = max({{ var }}, na.rm = TRUE)

)
}

Now, let’s once again use the function we just created above to calculate the descriptive
measures we are interested in.

continuous_stats(age)

# A tibble: 1 x 5
n_miss mean median min max
<int> <dbl> <dbl> <dbl> <dbl>

1 1 26.9 26 22 48

continuous_stats(ht_in)

# A tibble: 1 x 5
n_miss mean median min max
<int> <dbl> <dbl> <dbl> <dbl>

1 3 66.0 66 58 76

continuous_stats(wt_lbs)

# A tibble: 1 x 5
n_miss mean median min max
<int> <dbl> <dbl> <dbl> <dbl>

1 2 148. 142. 60 297

continuous_stats(bmi)

# A tibble: 1 x 5
n_miss mean median min max
<int> <dbl> <dbl> <dbl> <dbl>

1 4 23.6 22.9 10.6 45.2

�Once again, you notice that we have essentially the same code copied more than twice. That’s a
red flag that we should be thinking about removing unnecessary repetition. We’ve already seen
how to accomplish this goal using the across() function. Now, let’s learn how to accomplish
this goal using the purrr package.

760



map_dfr(
.x = quos(age, ht_in, wt_lbs, bmi),
.f = continuous_stats

)

# A tibble: 4 x 5
n_miss mean median min max
<int> <dbl> <dbl> <dbl> <dbl>

1 1 26.9 26 22 48
2 3 66.0 66 58 76
3 2 148. 142. 60 297
4 4 23.6 22.9 10.6 45.2

�Here’s what we did above:

• We used the map_dfr() function from the purrr package to iteratively pass the columns
age, ht_in, wt_lbs, and bmi to our continuous_stats function and row-bind the results
into a single results data frame.

• We haven’t seen the quos() function before. It’s another one of those tidy evaluation
functions. You can type ?rlang::quos in your console to read more about it. When we
can wrap a single column name with the quo() function, or a list of column names with
the quos() function, we are telling R to look for them in the data frame being passed
to a dplyr verb rather than looking for them as objects in the global environment.

At this point, you may be wondering which row in the results data frame above corresponds
to which variable? Great question! When we were using continuous_stats() to analyze one
variable at a time, it didn’t really matter that the variable name wasn’t part of the output.
However, now that we are apply continuous_stats() to multiple columns, it would really be
nice to have the column name in the results. Luckily, we can easily make that happen with
one small tweak to our continuous_stats() function.

continuous_stats <- function(var) {
study %>%

summarise(
variable = quo_name(var), # Add variable name to the output
n_miss = sum(is.na({{ var }})),
mean = mean({{ var }}, na.rm = TRUE),
median = median({{ var }}, na.rm = TRUE),
min = min({{ var }}, na.rm = TRUE),
max = max({{ var }}, na.rm = TRUE)

)
}

761



�Here’s what we did above:

• We used the quo_name() function to grab the name of the column being passed to
the summarise() function and turn it into a character string. Then, we assigned that
character string to column in the results data frame called variable. So, when the age
column is passed to summarise() inside of the function body, quo_name(var) returns
the value "age" and then that value is assigned to the variable column in the expression
variable = quo_name(var).

Let’s try out our new and improved continuous_stats() function:

map_dfr(
.x = quos(age, ht_in, wt_lbs, bmi),
.f = continuous_stats

)

# A tibble: 4 x 6
variable n_miss mean median min max
<chr> <int> <dbl> <dbl> <dbl> <dbl>

1 age 1 26.9 26 22 48
2 ht_in 3 66.0 66 58 76
3 wt_lbs 2 148. 142. 60 297
4 bmi 4 23.6 22.9 10.6 45.2

That works great, but we’d probably like to be able to use continuous_stats() with other
data frames too. Currently, we can’t do that because we have the study data frame hard-
coded into our function. Luckily, we’ve already seen how to replace a hard-coded data frame
by adding a data argument to our function like this:

continuous_stats <- function(data, var) {
data %>% # Don't forget to replace "study" with "data" here too!

summarise(
variable = quo_name(var),
n_miss = sum(is.na({{ var}} )),
mean = mean({{ var }}, na.rm = TRUE),
median = median({{ var }}, na.rm = TRUE),
min = min({{ var }}, na.rm = TRUE),
max = max({{ var }}, na.rm = TRUE)

)
}

And now, we can analyze all the continuous variables in the study data:

762



map_dfr(
.x = quos(age, ht_in, wt_lbs, bmi),
.f = continuous_stats, data = study

)

# A tibble: 4 x 6
variable n_miss mean median min max
<chr> <int> <dbl> <dbl> <dbl> <dbl>

1 age 1 26.9 26 22 48
2 ht_in 3 66.0 66 58 76
3 wt_lbs 2 148. 142. 60 297
4 bmi 4 23.6 22.9 10.6 45.2

And all the continuous variables in the df_xyz data:

map_dfr(
.x = quos(x, y, z),
.f = continuous_stats, data = df_xyz

)

# A tibble: 3 x 6
variable n_miss mean median min max
<chr> <int> <dbl> <dbl> <dbl> <dbl>

1 x 1 0.108 0.0705 -1.27 1.72
2 y 1 0.220 0.401 -1.97 1.79
3 z 1 -0.284 -0.625 -1.14 1.25

37.4.2 Example 2: Categorical statistics

For our second example of using the purrr package for analysis, we’ll once again write some
code to iteratively analyze all the categorical variables in our study data frame. In the last
chapter, we learned how to use a for loop to do this analysis. As a refresher, here is the final
solution we arrived at:

# Structure 1. An object to contain the results.
# Create the data frame structure that will contain our results

cat_table <- tibble(
variable = vector("character"),
category = vector("character"),
n = vector("numeric")

763



)

# Structure 2. The actual for loop.
# For each column, get the column name, category names, and count.
# Then, add them to the bottom of the results data frame we created above.

for(i in c("age_group", "gender", "bmi_3cat")) {
cat_stats <- study %>%

count(.data[[i]]) %>% # Use .data to refer to the current data frame.
mutate(variable = names(.)[1]) %>% # Use . to refer to the current data frame.
rename(category = 1)

# Here is where we update cat_table with the results for each column
cat_table <- bind_rows(cat_table, cat_stats)

}

cat_table

# A tibble: 10 x 3
variable category n
<chr> <chr> <dbl>

1 age_group Younger than 30 56
2 age_group 30 and Older 11
3 age_group <NA> 1
4 gender Female 43
5 gender Male 24
6 gender <NA> 1
7 bmi_3cat Normal 43
8 bmi_3cat Overweight 16
9 bmi_3cat Obese 5
10 bmi_3cat <NA> 4

To use purrr instead, we can pretty much copy and paste the code from the for loop body
above as an anonymous function to the .f argument to map_dfr() like this:

map_dfr(
.x = c("age_group", "gender", "bmi_3cat"),
.f = function(x) {

study %>%
count(.data[[x]]) %>%
mutate(variable = names(.)[1]) %>%
rename(category = 1) %>%

764



select(variable, category, n)
}

)

# A tibble: 10 x 3
variable category n
<chr> <fct> <int>

1 age_group Younger than 30 56
2 age_group 30 and Older 11
3 age_group <NA> 1
4 gender Female 43
5 gender Male 24
6 gender <NA> 1
7 bmi_3cat Normal 43
8 bmi_3cat Overweight 16
9 bmi_3cat Obese 5
10 bmi_3cat <NA> 4

As you can see, the code that is doing the analysis is exactly the same in our for loop solution
and our purrr solution. However, in this case, the purrr solution requires a lot less code
around the analysis code. And, for some, the purrr code is easier to read.

If we didn’t want to type our column names in quotes, we could use tidy evaluation again.
All we have to do is pass the column names to the quos() function in the .x argument and
change the .data[[x]] being passed to the count() function to { x } like this:

map_dfr(
.x = quos(age_group, gender, bmi_3cat), # Change c() to quos()
.f = function(x) {

study %>%
count({{ x }}) %>% # Change .data[[x]] to {{ x }}
mutate(variable = names(.)[1]) %>%
rename(category = 1) %>%
select(variable, category, n)

}
)

# A tibble: 10 x 3
variable category n
<chr> <fct> <int>

1 age_group Younger than 30 56

765



2 age_group 30 and Older 11
3 age_group <NA> 1
4 gender Female 43
5 gender Male 24
6 gender <NA> 1
7 bmi_3cat Normal 43
8 bmi_3cat Overweight 16
9 bmi_3cat Obese 5
10 bmi_3cat <NA> 4

And as before, we’d probably like to be able to use this code with other data frames too. So, we
will once again replace a hard-coded data frame by adding a data argument to our function:

map_dfr(
.x = quos(age_group, gender, bmi_3cat),
.f = function(x, data = study) {

data %>% # Don't forget to replace "study" with "data" here too!
count({{ x }}) %>%
mutate(variable = names(.)[1]) %>%
rename(category = 1) %>%
select(variable, category, n)

}
)

# A tibble: 10 x 3
variable category n
<chr> <fct> <int>

1 age_group Younger than 30 56
2 age_group 30 and Older 11
3 age_group <NA> 1
4 gender Female 43
5 gender Male 24
6 gender <NA> 1
7 bmi_3cat Normal 43
8 bmi_3cat Overweight 16
9 bmi_3cat Obese 5
10 bmi_3cat <NA> 4

And that concludes the chapter! You might feel a little bit like your head is swimming at
this point. It was a lot to take in! As was stated at the end of the for loop chapter, it is
not recommended to memorize everything we covered in this chapter. Instead, we recommend

766



that you read it until you sort of get the general idea of the purrr package and when it
might be useful. Then, refer back to this chapter, or other online references that discuss the
purrr package (there are many good ones out there), if you find yourself in a situation where
you believe that the purrr package might be the right tool to help you complete a given
programming task.

If you feel as though you want to take a deeper dive into the purrr package right away, then
we suggest checking out the iteration chapter of R for Data Science. For an even deeper dive,
the functionals chapter of Advanced R is recommended.

This concludes the repeated operations part of the book. If you aren’t feeling totally com-
fortable with the material we covered in this part of the book right now, that’s ok. You’re
not expected to yet. It takes time and practice for most people to be able to wrap their head
around repeated operations. You are on track at this point as long as you understand why
unnecessary repetition in your code is generally something you want to avoid. Then, slowly
start using any of the methods you feel most comfortable with to remove the unnecessary repe-
tition from your code. Start by doing so in very simple cases and gradually work your way up
to more complicated cases. With some practice, you may eventually think this stuff is even
fun!

767

https://r4ds.had.co.nz/iteration.html#for-loops-vs.functionals
https://adv-r.hadley.nz/functionals.html


Part VII

Collaboration

768



38 Introduction to git and GitHub

If you read this book’s introductory material, specifically the section on Contributing to R4Epi,
then you have already been briefly exposed to GitHub. If not, taking a quick look at that
section may be useful. GitHub is a website specifically designed to facilitate collaboratively
creating programming code. In many ways, GitHub is a cloud-based file storage service like
Dropbox, Google Drive, and OneDrive, but with special tools built-in for collaborative coding.
Git is the name of the versioning software that powers many of GitHub’s special tools. We
will talk about what versioning means shortly.

The goal of this, and the next few, chapters isn’t to teach you everything you need to know
about git and GitHub. Not even close! That would fill up its own book. The goal here is just
to expose you to git and GitHub, show you a brief example of how they may be useful to you,
and provide you with some resources you can use to learn more if you’re interested.

But, why should you be interested in the first place? Well, there are at least four overarching
reasons why you should consider learning to use git and GitHub as part of your workflow when
your projects include data and/or coding:

769

../contributing/contributing.qmd
https://github.com/


1. Versioning

2. Preservation

3. Reproducibility

4. Collaboration

We’ll elaborate on what each of these means to us below. Then, we will introduce you to git
and GitHub, and explain why they are some of the best tools currently available to help you
with versioning and collaborating. We’ll go ahead and warn you now — git and GitHub can be
hard to wrap your mind around at first. In fact, using git and GitHub still frequently causes
us confusion and frustration at times. However, we still believe that the payoff is ultimately
worth the upfront investment in time and frustration. Additionally, we will do our best to
make this introduction as gentle, comprehensible, and practically applicable as possible.

38.1 Versioning

Have you ever worked on a paper or report and had a folder on your computer that looked
something like this?

Saving a bunch of different versions of a file like this is a real mess. It becomes even worse
when you are trying to work with multiple people. What is contained in each document again?

770



What order were the documents created in? What are the differences between the documents?
Versioning helps us get around all of these problems.

Instead of jumping straight into learning versioning with git and GitHub, we will start our
discussion about versioning using a simple example in Google Docs. Not because Google Docs
are especially relevant to anything else in this course, but because there are a lot of parallels
between the Google Docs versioning system and the git versioning system when it is paired
with Github. However, the Google Docs versioning system is a little bit more basic, easy to
understand, and easy to experiment with. Later, we will refer back to some of these Google
Docs examples when we are trying to explain how to use git and GitHub. If you’d like to do
some experimenting of your own, feel free to navigate to https://docs.google.com/ now and
follow along with the following demonstration.

First, we will type a little bit of text in our Google Doc. It doesn’t really matter what we type
— this is purely for demonstration purposes. In the example below, we type “Here is some
text.”

Now, let’s say that we decide to make a change to our text. Specifically, we decide to replace
“some” with “just a little.”

Now, let’s say that we changed our mind again and we want to go back to using the original
text. In this case, it would be really easy to go back to using the original text even without
versioning. We could just use “undo” or even retype the previous text. But, let’s pretend for
a minute that we changed a lot of text, and that we made those changes several weeks ago.
Under those circumstances, how might we view the original version of the document? We can
use the Google Docs versioning system. To do so, we can click File then Version history
then See version history. This will bring up a new view that shows us all the changes
we’ve made to this document, and when we made them.

This is great! We don’t have to save a bunch of different files like we saw in the “messy” folder
at the beginning of this section. Instead, there is only one document, and we can see all the
versions of that document, who created the various versions of that document, when all the
various versions of that document were created, and exactly what changed from one version
to the next. In other words, we have a complete record of the evolution of this document in
the version history — how we got from the blank document we started with to the current
version of the document we are working with today.

Further, if we want to turn back the clock to a previous version of the document, we need only
select that version and click the Restore this version button like this.

But, you can probably imagine how difficult it can be to find a previous version of a document
by searching through a list of dates. In the example above, there were only three dates to look
through, but in a real work document, there may be hundreds of versions saved. The dates, by
themselves, aren’t very informative. Luckily, when we hit key milestones in the development
of our document, Google Docs allows us to name them. That way, it will be easy to find that
version in the future if we ever need to refer to it (assuming we give it an informative name).

771

https://docs.google.com/
../best_practices/best_practices.qmd


For example, let’s say that we just added a table to our document that includes the mean
values of the variables X and Y for two groups of people - Group 1 and Group 2. Completing
this table is a key milestone in the evolution of our document and this is a great time to name
the current version of the document just in case we ever need to refer back to it. To do so, we
can click File then Version history then Name current version.

Notice that in the example above I used the word commit instead of the word save. In this
case, they essentially mean the same thing, but soon you will see that git also uses the word
commit to refer to taking a snapshot of the state of our project — similar to the way we just
took a snapshot of the state of our document.

Now let’s say that we decide to use medians in our table instead of means. After making that
change, our document now looks like this.

Figure 38.1: A gif about switching back to an old version in Google Docs.

Can you guess what we are about to do next? That’s right! We changed our minds again
and decided to switch back to using the mean values in the table. No problem! We can easily
search for the version of the document that we committed, which includes the table of mean
values. We can then restore that version as we did above.

772



38.2 Preservation

In addition to versioning, the ability to preserve all of your code and related project files in
the cloud is another great reason to consider using GitHub. In other words, you don’t have
to worry about losing your code if your computer is lost, damaged, or replaced. All of your
project files can easily be retrieved and restored from GitHub. Although the same is true for
other cloud-based file storage services like Dropbox, Google Drive, and OneDrive, remember
that GitHub has special built-in tools that those services do not provide.

38.3 Reproducibility

Reproducibility, or more precisely, reproducible research, is a term that may be unfamiliar
to many of you. Peng and Hichs (2021) give a nice introduction to reproducible research:11

Scientific progress has long depended on the ability of scientists to communicate
to others the details of their investigations… In the past, it might have sufficed
to describe the data collection and analysis using a few key words and high-level
language. However, with today’s computing-intensive research, the lack of details
about the data analysis in particular can make it impossible to recreate any of the
results presented in a paper. Compounding these difficulties is the impracticality
of describing these myriad details in traditional journal publications using natural
language. To address this communication problem, a concept has emerged known
as reproducible research, which aims to provide for others far more precise descrip-
tions of an investigator’s work. As such, reproducible research is an extension of
the usual communications practices of scientists, adapted to the modern era.

They go on to define reproducible research in the following way:11 12

A published data analysis is reproducible if the analytic data sets and the computer
code used to create the data analysis are made available to others for independent
study and analysis.

We will not delve deeper into the general importance and challenges of reproducible research
in this book; however, we encourage readers who are interested in learning more about repro-
ducible research to take a look at both of the articles cited above. Additionally, we believe it’s
important to highlight that GitHub is a great tool for making our research more reproducible.
Specifically, it provides a platform where others can easily download the data (when we are
allowed to make it available), computer code, and documentation needed to recreate our re-
search results. This is a great asset for scientific progress, but only if researchers like us use it
effectively.

773



38.4 Collaboration

In the sections above, we discussed the ways in which git and GitHub are tools we can use for
versioning, preserving our code in the cloud, and making our research more reproducible. All
of these are important benefits of using git and GitHub even if we don’t routinely collaborate
with others to complete our projects. However, the power of GitHub is even greater when
we think about using it as a tool for collaboration — including collaboration with our future
selves.

For example, one research project that we (the authors) both work on is the Detection of Elder
abuse Through Emergency Care Technicians (DETECT) project. Let’s say that we would like
to start collaborating with you on DETECT. Perhaps we need your help preprocessing some
of the DETECT data and conducting an analysis. So, how do we get started?

Because we created a repository on GitHub for the DETECT project, all of the files and
documentation you need to get started are easily accessible to you. In fact, you don’t even have
to reach out to us first for access. They are freely available to anyone who is interested. Please
go ahead and use the following URL to view the DETECT repository now: https://github.
com/brad-cannell/detect_pilot_test_5w. GitHub repositories may look a little confusing at
first, but you will get used to them with practice.

Note

Repository is a git term that can seem a little confusing or intimidating at first. However,
it’s really no big deal. You can think of a git repository as a folder that holds all of the
files related to your project. On GitHub, each repository has its own separate website
where people from anywhere in the world can access the files and documents related to
your project. They can also communicate with you through your GitHub repository, post
issues to your GitHub repository if they encounter a problem, and contribute code to
your project.

We could have emailed the files back and forth, but what if we accidentally forget to send you
one? What if one of the files is too large to email? What if two people are working on the
same file at the same time and send out their revisions via email? Which version should we
use? In the chapters that follow, we will show you how using GitHub to share project files
gets around these, and other, collaboration issues.

38.5 Summary

In summary, git and GitHub are awesome tools to use when our projects involve research
and/or data analysis. They allow us to store all of our files in the cloud with the added benefit
of versioning and many other collaboration tools. The primary disadvantage of using GitHub

774

https://github.com/brad-cannell/detect_pilot_test_5w
https://github.com/brad-cannell/detect_pilot_test_5w


instead of just emailing code files or using general-purpose cloud storage services is its learning
curve. But, in the following chapters, we hope to give you enough knowledge to make GitHub
immediately useful to you. Over time, you can continue to hone your GitHub skills and really
take advantage of everything it has to offer. We think if you make this initial investment, it is
unlikely that you will ever look back.

775



39 Using git and GitHub

In the previous chapter, we discussed why we should consider learning to use git and GitHub
as part of our workflow when our projects include data and/or coding. In this chapter, we will
begin to talk about how to use git and GitHub. We will also introduce a third tool, GitKraken,
that makes it easier for us to use git and GitHub.

39.1 Install git

Before we can use git, we will need to install it on our computer. The following chapter of Pro
Git provides instructions for installing git on Linux, Windows, and MacOS operating systems:
Get Started Installing Git.

If you are using a Mac, it’s likely that you already have git — most Macs ship with git installed.
To check, open your Terminal app. The Terminal app is located in the Utilities folder, which is
located in the Applications folder. In the terminal app, type “git version”. If you see a version

776

../intro_git_github/intro_git_github.qmd
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git


number, then it is already installed. If not, then please follow the installation instructions
given in the link to Pro Git above.

Figure 39.1: Checking git version in the MacOS terminal.

39.2 Sign up for a GitHub account

We have already alluded to the fact that git and GitHub are not the same thing. You can use
git locally on your computer without ever using GitHub. Conversely, you can browse GitHub,
and even do some limited contributing to code, without ever installing git on your computer
(e.g., see Contributing to R4Epi. However, git and GitHub work best when used together.
You don’t need to download anything to start using GitHub, but you will need to sign up for
a free GitHub account. To do so, just navigate to https://github.com/

777

../contributing/contributing.qmd
https://github.com/


39.3 Install GitKraken

Git is software for our computer. However, unlike most of the software we are used to using,
git does not have a graphical user interface (GUI - pronounced “gooey”). In other words, there
is no git application that we can open and start clicking around in. Instead, by default, we
interact with git by typing commands into the computer’s terminal – also called “command
line” in GitHub’s documentation – like we saw in Figure 39.1. The commands we type to use
git kind of look like their own programming language. In our experience, interacting with git
in the terminal is awkward, inefficient, and unnecessary for most new git users. And learning
to use git in this way is a barrier to getting started in the first place. �

Thankfully, other third-party vendors have made excellent GUI’s for git that we can download
and use for free. Our current favorite is called GitKraken. To use GitKraken, you will first
need to navigate to the GitKraken website (https://www.gitkraken.com/). If it helps, you can
think of git and GitKraken as having a relationship that is very similar to the relationship
between R and RStudio. R is the language. RStudio is the application that makes it easier
for us to use the R language to work with data. Similarly, git is the language and GitKraken
is the application that makes it easier for us to use git to track versions of our project files.

Before you use the GitKraken client, you will need to sign up for an account. It may say
that you need to sign up for a free trial. Go ahead and do it. The free trial is just for the
“Pro” version. At the end of the free trial, you will automatically be downgraded to the “Free”

778

https://en.wikipedia.org/wiki/Graphical_user_interface
https://www.gitkraken.com/


version, which is… free. And, the free version will do everything you need to do to follow along
with this book.

Next, you will need to click on the “Try Free” button. Then, download and install the
GitKraken Client to your computer.

779



As you are installing GitKraken, it should ask you if you want to sign up with your GitHub
account. Yes, you do! It will make your life much easier down the road. If you didn’t sign up
for a GitHub account in the previous step, please go back and do so.

Then click the green Continue authorization button.

780



Then, you will be asked to sign into your GitHub account – possibly using your two-factor
authentication. When you see the success screen, you can close your browser and return to
GitKraken.

The next thing you will do is create a profile. After you create a profile, you will be asked if
you want the Repo Tab first or the Terminal Tab first. We recommend that you select the
Repo Tab option.

781



Once you have installed Git and GitKraken, and you’ve created your GitHub account, you
will have all the tools you need to follow along with all of the examples in this book. Speaking
of examples, let’s go ahead and take a look at a couple now.

39.4 Example 1: Contribute to R4Epi

If you haven’t already done so, please read the contributing to R4Epi portion of the book’s
welcome page. This will give you a gentle introduction to using GitHub, for a very practical
purpose, without even needing to use git or GitKraken.

39.5 Example 2: Create a repository for a research project

In this example, we will learn how to create our very own git and GitHub repositories from
scratch. We can immediately begin using the lessons from this example for our research
projects – even if we aren’t collaborating with others on them. Remember, there are at least
four overarching reasons why you should consider learning to use git and GitHub as part of
your workflow for your projects, and collaboration is only one of them. Not to mention the
fact that it is often useful to think of our future selves as other collaborators, which we have
mentioned and/or alluded to many times in this book.

There are many possible ways we could set up our project to take advantage of all that git and
GitHub have to offer. We’re going to show you one possible sequence of steps in this example,

782

../contributing/contributing.qmd
../contributing/contributing.qmd
../intro_git_github/intro_git_github.qmd
../intro_git_github/intro_git_github.qmd


but you may decide that you prefer a different sequence as you get more experience, and that’s
totally fine!

This example is long! So, we created a brief outline that you can quickly reference in the
future. Details are below.

Step 1: Create a repository on GitHub
Step 2: Clone the repository to your computer
Step 3: Add an R project file to the repository
Step 4: Update and commit gitignore
Step 5: Keep adding and committing files

Step 1: Create a repository on GitHub

The first thing we will do is create a repository on GitHub. Repositories are the fundamental
organizational units of your GitHub account. Other cloud storage services like Dropbox are
organized into file folders at every level. Meaning, you have your main Dropbox folder, which
has other folders nested inside of it – many of which may have their own nested folders. Your
GitHub account also stores all your files in file folders; however, the level one folders — those
that aren’t nested inside of another folder — are called repositories (represented by the book
icon in the image below and on the GitHub website). Typically, each repository is an entire,
self-contained project. Like a file folder, each repository can contain other folders, code files,
media files, data sets, and any other type of file needed to reproduce your research project.

783



Figure 39.2: GitHub repositories compared to Dropbox.

Warning

Just because we can upload data to GitHub doesn’t mean we should upload data to
GitHub. Often, the data we use in epidemiology contains protected health information
(PHI) that we must go to great lengths to keep secure. In general, GitHub is NOT
considered a secure place to store our data and should not be used for this purpose.
Below, we will demonstrate how to make sure our data isn’t uploaded to GitHub with
the rest of the files in our repository.

To create a new repository in GitHub, we will simply click the green Create repository
button. This button will look slightly different depending on where we are at in the GitHub
website. The screenshot below was taken from Arthur Epi’s (our fictitious research assistant)
main landing page (i.e., https://github.com/).

784

https://privacyruleandresearch.nih.gov/pr_07.asp
https://github.com/


After clicking the green Create repository button, the next page Arthur will see is the setup
page for his repository. For the purposes of this example, he will use the following information
to set it up.

• Repository name: As the on-screen prompt says, great repository names are short and
memorable. Further, the repository name must be unique to his account (i.e., he can’t
have two repositories with the same name), and it can only include letters, numbers,
dashes (-), underscores (_), and periods (.). We recommend using underscores to sepa-
rate words to be consistent with the object naming guidelines from coding-best-practices.
For this example, he will name the repository r4epi_example_project.

• Description: The description is optional, but we like to fill it in. Arthur’s description
should also be brief. Ideally it will allow others scanning our repository to quickly
determine what it’s all about. For this example, the description will say, “An example
repository that accompanies the git and GitHub chapters in the R4Epi book.”

• Public/Private: We can choose to make our repositories public or private. If we make
them public, they can be viewed by anyone on the internet. If we make them private,
we can control who is able to view them. At first, you may be tempted to make your
repositories private. It can feel vulnerable to put your project/code out there for the
entire internet to view. However, we are going to recommend that you make all of
your repositories public and be thoughtful about the files/documents/information you
choose to upload to them. For example, we NEVER want to upload data containing
information with PHI or individual identifiers in it. So, we will often need to figure out a
different way to share our data with others who legitimately need access to it, but we can

785

../best_practices/best_practices.qmd


often use GitHub to share all other files related to the project. Making our repository
public makes it easier for others to locate our work and potentially collaborate with us.

• Add a README file: A README file has a special place in GitHub. Under the
hood, it is just a markdown file. No different than the Quarto files we learned about
in the chapter on Quarto files (. However, naming it README gives it a special status.
When we include a README file in our repository, GitHub will automatically add it to
our repository’s homepage. We should use it to give others more information about our
project, what our repository does, how to use the files in our repository, and/or how to
contribute. So, we will definitely want a README file. Arthur may as well go ahead
and check the box to create it along with his repository (although, we can always add it
later).

• Add .gitignore: We will discuss .gitignore later. Briefly, you can think of it as
a list of files we are telling GitHub to ignore (i.e., not to track). This gets back to
versioning, which we discussed in the Versioning section of the introduction to git and
GitHub chapter. For now, Arthur will just leave it as is.

• License: The GitHub documentation states that, “Public repositories on GitHub are of-
ten used to share open-source software. For your repository to truly be open source, you’ll
need to license it so that others are free to use, change, and distribute the software.”13

Because we aren’t currently using our repository to create and distribute open-source
software (like R!!), we don’t need to worry about adding a license. That isn’t to say
that you won’t ever need to worry about a license. For more on choosing a license,
we can consult the GitHub documentation or potentially consult with our employer or
study sponsor. For example, our universities have officials that help us determine if our
repositories need a license.

786

../Quarto_files/Quarto_files.qmd
https://docs.github.com/en/repositories/managing-your-repositorys-settings-and-features/customizing-your-repository/licensing-a-repository


Now, that he has completed all the setup steps, Arthur can click the green Create repository
button. This will create his repository and take him to its homepage on GitHub. As you can
see in the screenshot below (you can also navigate to the website yourself), GitHub creates
a basic little website for the repository. The top middle portion of the page (outlined in red
below) displays all of the files and folders in the repository. Currently, the repository only
contains one file – README.md – but Arthur will add others soon.

787

https://github.com/arthur-epi/r4epi_example_project


To the right of files and folders section of the homepage is the About section of the page.
This section (outlined in red below) contains the repository’s description, tags, and other
information that we will ignore for now.

Below the files and folders section of the page is where the README file is displayed. Notice
that by default, GitHub added the repository’s name and description to the README file.

788



Not a bad start, but we can add all kinds of cool stuff to README – including tables, figured,
images, links, and other media. In fact, you can add almost anything to a README file that
you can add to any other website. This is a great place to get creative and really make your
project stand out!

Now, Arthur has a working GitHub repository up and running. Let’s pause for a moment to
and celebrate! �

Okay, celebration complete. Now, what does he do with this new GitHub repository? Well,
he does the four things covered in Introduction to git and GitHub

1. He will start adding files to his repository and document their purpose and evolution
with versioning.

2. In the process, he will preserve his files, and by extension, his project.

3. Doing so will help to make his research more reproducible.

4. And make it easier for him to collaborate with others – including his future self.

Let’s start by taking a look at versioning in GitHub. As we discussed in the Versioning section
of the Introduction to git and GitHub chapter, GitHub uses the word commit to refer to taking
a snapshot of the state of our project, similar to how we might typically think about saving a
version of a document we are working on. We saw how we could view the version history of our
Google Doc by clicking File then Version history then See version history. In GitHub,

789

../intro_git_github/intro_git_github.qmd
../intro_git_github/intro_git_github.qmd
../intro_git_github/intro_git_github.qmd


we can similarly view the version history (also called the commit history) of our repository.
To do so, we navigate to our repository’s homepage, and click on the word commit in the top
right corner of the files section (outlined in red below).

This will take us to our repository’s version history page. Currently, this repository only has
one commit – the “Initial commit”. This name is used by convention in the GitHub community
to refer to the first commit in the repository. The history also tells us when the commit was
made and who made it. On the right side of the commit, there are three buttons.

790



1. The first button on the left that looks like two partially overlapping boxes will copy the
commit’s ID so that we can paste it elsewhere if we want. In GitHub, every commit is
assigned a unique ID, which is also called an “SHA” or “hash”. The commit ID is a string
of 40 characters that can be used to refer to a specific commit. The 274519 displayed
on the middle button is the first 7 characters of this commit’s ID.

2. As noted above, the middle button is labeled with the first 7 characters of this commit’s
ID - 274519. Clicking on it will take us to a new screen with the details of what this
commit does to the files in the repository (i.e., additions, edits, and deletions). Arthur
will click it so we take a look momentarily.

3. The button on the far right, which is labeled with two angle brackets (< >) will take us
back to the repository’s homepage. However, the files in the repository will be set back
to the state they were in when the commit was made. In this case, there is only one
commit. So, there’s no difference between the current state of the repository and the
state it would be in if Arthur clicked this button. However, this button can be useful.
If Arthur makes some changes to a file and then later wants to see what the file looked
like before he made those changes, he can use this button to take a look.

Now, Arthur will click the middle button labeled with the short version of the commit ID.

On the page he is taken to, we can see more details about what commit 274519 does to
the files in the repository. The top section of the page (outlined in red below) contains
pretty much the same information we saw on the previous page. The little symbol on
the left that looks kind of like a backwards 4 with open circles at the ends of the lines

791



tells us which branch we are operating on. Branches are a more advanced topic that
we will discuss later. Currently, our repository only has one branch – the default main
branch – and the symbol followed by the word “main” is telling us that this commit is
on the main branch. To the far right of this section, there is a button that says Browse
files. Clicking this button does the exact same thing as the button on the previous page
that was labeled with two angle brackets (< >). Below the Browse files button, are
the words 0 parents and commit 277451996a7e9a0a6e583124d762db2a9cd439a2. This
tells us that this commit doesn’t have any parent commits and that the full commit ID
is 277451996a7e9a0a6e583124d762db2a9cd439a2. We discussed commit ID’s above. The
parent commit is the commit or commits that this commit is based on. In other words,
what were the other things that happened to get us to this point? Because this is the initial
commit, there are no parent commits.

The middle section of the commit details page tells us that applying this commit to the
repository changes 1 file. In that file, there are two additions and no deletions. Below this
text we can see which file was changed - README.md. This is also called the diff view because
we can see the differences between this version of the file and previous versions of the file. In
this case, because there wasn’t a previous version of the file, we just see the two additions
that were made to the file. They are the level one header that was added to the first line
of the file (i.e., # r4epi_example_project) and our project’s description was added to the
second line of the file. These additions were made automatically by GitHub. We know they
are additions because the background color is green and there is a little plus sign immediately
to their left. We know which lines of the file were changed because GitHub shows us the line
number immediately to the left of the plus signs.

792



The final section of the commit details page shows us any existing comments that Arthur, or
others, made about this commit. It also allows us, or others to create a new comment, using
the text box.

In the screenshot below, we can see an example comment. Note all the cool things features
GitHub comments allow us to use. We can format the text, add bullets, add links, and even

793



add clickable checkboxes.

Finally, clicking the green Comment on this commit button adds our comment to the commit
details page.

794



Let’s pause here for a moment and try to appreciate how powerful GitHub already is compared
to other cloud-based file storage services like Dropbox, Google Drive, or OneDrive. Like those
file storage services, all of our files are backed up and preserved in the cloud and can easily be
shared with others. However, unlike Dropbox, Google Drive, and OneDrive, we can turn our
repository’s homepage into a little website describing our project, we can view all the changes
that have been made to our project over time, we can see which specific lines of each file have
changed and how, and we can gather all comments, questions, and concerns about the files in
one place. Oh, and it’s Free!

795



Step 2: Clone the repository to your computer

At this point, Arthur’s repository, which is just a fancy file folder, and the one file in his
repository (README.md), only exist on the GitHub cloud.

Note

What is “the GitHub cloud”? For our purposes, the cloud just refers to a specific type
of computer – called a server – that physically exists somewhere else in the world, which
we can connect to over the internet. GitHub owns many servers, and our files are stored
on one of them. After we connect to the GitHub server, we can pass files back and forth
between our computer and GitHub’s computer (i.e., the server).

Figure 39.3: GitHub Cloud.

So, how does he get the repository from the GitHub cloud to his computer so that he can start
making changes to it?

He will clone the repository to his computer. Don’t get thrown off by the funny name. You
can simply think “make a copy of” whenever you see the word “clone” for now. So, he will
“make a copy of” the repository on his computer. However, cloning the repository actually
does two very useful things at once:

1. It creates a copy of our repository, and all of the files and folders in it, on our computer.

796

https://docs.github.com/en/repositories/creating-and-managing-repositories/cloning-a-repository


2. It creates a connection between our computer and the GitHub cloud that allows us to
pass files back and forth.

There are multiple possible ways we could clone our repository, but we’re going to use
GitKraken in this book. If you did not already download GitKraken and connect it with
your GitHub account as demonstrated at the beginning of the chapter, please do so now.

When we open GitKraken, we should see something similar to the screenshot below. Arthur
will start the cloning process by clicking the Clone a repo button.

When the Repository Management dialogue box opens, he will need to make 3 changes.

1. Click GitHub.com in the clone menu. This tells GitKraken that the repository he wants
to clone currently lives on his GitHub account. Note that it has to be on his account in
order for it to show up on this list – not someone else’s account. We will learn how to
get files from someone else’s account later.

2. Set the path where he wants the repository to be cloned to. Remember, the repository is
a just a folder with some files in it. When we clone the repository to our computer, those
files and folders will live on our computer somewhere. We need to tell GitKraken where
we want them to live. In the screenshot below, Arthur is just cloning the repository to
his computer’s desktop.

3. Tell GitKraken which repository on his GitHub account he wants to clone. We can use
the drop-down arrow to search a list of all of our repositories. In the screenshot below,
Arthur selected the r4epi_example_project repository.

797



Finally, he will click the green Clone the repo! button. Now, he has successfully cloned his
repository to his computer! �

Before moving on, let’s pause and review what just happened.

As we discussed above, Arthur’s repository already existed on the GitHub cloud see Figure 39.3.

798



In git terminology, the GitHub cloud called a remote repository, or “repo” for short. Remote
repositories are just copies of our repository that live on the internet or some other network.
Arthur then cloned his remote repository to his computer. That means, he made a copy of
all of the files and folders on his computer. In git terminology, the repository on our computer
is called a local repository.

Now that he has successfully cloned his repository, he should be able to view it in two different
ways.

First, he should be able to see his repository’s file folder on his desktop (because that’s the
location he chose above).

Second, he should be able to open a tab in GitKraken with all the versioning information
about his repository.

799



Let’s pause here and watch a brief video from GitKraken that orients us to the GitKraken
user interface. For now, the first three minutes of the video is all we need. There may be some
unfamiliar terms in the video. Don’t stress about it! We will cover the most important parts
after the video and learn some of the other terms in future examples.

https://www.youtube.com/embed/RiAeNSFjjLc

Moving back to Arthur’s repository, we can see that the repository graph in the middle section
of the user interface has only on commit – the initial commit. This matches what we saw on
GitHub.

800

https://www.youtube.com/embed/RiAeNSFjjLc


If we zoom in on the upper left corner of the left sidebar menu (outlined in red below), we
can see that GitKraken is aware of two different places where the repository lives. First, it
tells us that Arthur has a local repository on his computer with one branch – the main branch.
Next, it tells us that there is one remote location for the repository – called “origin” – with
one branch – the main branch.

The term “origin” is used by convention in the git language to refer to the remote repository
that we originally cloned from. It uses the nickname “origin” instead of using the remote
repository’s full URL (i.e., web address). Arthur could change this name if he wanted, but
there’s really no need.

801



Another useful thing we can see in the current view, is that the local repository and the remote
repository on GitHub are in sync. Meaning, the files and folders in the repository on Arthur’s
computer are identical to the files and folders in the repository on the GitHub cloud. We
know this because the little white and gray picture that represents the remote repository and
the little picture of the laptop that represents the local repository are located side-by-side
on the repository graph (see red arrow below). When we have made changes in one location
or another, but haven’t synced those changes to the other location, the two icons will be in
different rows of the repository graph. We will see an example of this soon.

802



Step 3: Add an R project file to the repository

This step is technically optional, but we highly recommend it! We introduced R projects earlier
in the book. Arthur will go ahead and add an R project file to his repository now. This will
make his life easier later. To create a new R project, he just needs to click the drop-down
arrow next to the words Project: (None) to open the projects menu. Then, he will click the
New Project... option.

803

../r_projects/projects.qmd


That will open the new project dialogue box. This time, he will click the Existing Directory
option instead of clicking the New Directory option. Why? Because the directory (i.e., folder)
he wants to contain his R project already exists on his computer. Arthur cloned it to his
desktop in [step 2][Step 2: Clone the repository] above.

All Arthur has to do now, is tell RStudio where to find the r4epi_example_project directory

804



on his computer using the Browse... button. In this case, on his desktop. Finally, he will
click the Create Project button.

Step 4: Update and commit gitignore

Let’s take a look at Arthur’s RStudio files pane. Notice that there are now three files in
the project directory. There is the README file, the .Rproj file, and a file called .gitignore.
RStudio created this file automatically when Arthur designated the directory as an R project.

Outside of the name – .gitignore – there is nothing special about this file. It’s just a plain
text file. But naming it .gitignore tells the git software that it contains a list of files that
git should ignore. By ignore, we mean, “pretend they don’t exist.”

805



Arthur will now open the .gitignore file and see what’s there.

Currently, there are four files on the .gitignore list. These files were added automatically by
RStudio to try to help him out. Tracking versions of these files typically isn’t useful. Because
these files are on the .gitignore list, git and GitHub won’t even notice if Arthur creates,
edits, or deletes any of them. This means that they also won’t ever be uploaded to GitHub.

806



At this point, Arthur is going to go ahead and add one more file to the .gitignore list. He
will add .DS_store to the list. .DS_store is a file that the MacOS operating system creates
automatically when a Mac user navigates to a file or folder using Finder. None of that really
matters for our purposes, though. What does matter is that there is no need to track versions
of this file and it will be a constant annoyance if Arthur doesn’t ignore it.

If Arthur were using a Windows PC instead of a Mac, the .DS_store file should not be an issue.
However, adding .DS_store to .gitignore isn’t a bad idea even when using a Windows PC
for at least two reasons. First, there is no harm in doing so. Second, if Arthur ever collaborates
with someone else on this project who is using a Mac, then the .DS_store file could find its
way into the repository and become an annoyance. Therefore, we recommend always adding
.DS_store to the .gitignore list regardless of the operating system you personally use.

Adding .DS_store (or any other file name) to the .gitignore list is as simple as typing
.DS_store on its own line of the .gitignore file and clicking Save.

Typically, the next thing we would do after creating our repository is to start creating and
adding the files we need to complete our analyses.

Now, Arthur will open GitKraken so we can take a look. Notice that Arthur’s GitKraken looks
different than it did the last time we viewed it. That’s because we’ve been making changes to
the repository. Specifically, we’ve added two files since the last commit was made. There are
at least two ways we can tell that is the case.

First, the repository graph in the middle section of the user interface has now has two rows.
The bottom row is still the initial commit, but now there is a row above it that says // WIP

807



and has a + 2 symbol. WIP stands for work in progress and the + 2 indicates that there are
two files that have changed (in this case, they were added) since the last commit. So, Arthur
has been working on two files since his last commit.

Additionally, the commit panel on the right side of the screen shows that there are
two new uncommitted and unstaged files in the directory. They are .gitignore and
r4epi_example_project.Rproj.

At this point, Arthur wants to take a snapshot of the state of his repository. Meaning, he
wants to save a version of his repository as it currently exists. To do that, he first needs to
stage the changes since the previous commit that he wants to be included in this commit.
In this case, he wants to include all changes. So, he will click the green Stage all changes
button located in the commit panel.

808



After clicking the Stage all changes button, the two new files are moved down to the Staged
Files window of the commit panel.

Next, Arthur will write a commit message. Just like there are best practices for writing R code,
there are also best practices for writing commit messages. Here is a link to a blog post that
we think does a good job of explaining these best practices: https://cbea.ms/git-commit.

809

../best_practices/best_practices.qmd
https://cbea.ms/git-commit


The first line is called the commit message. You can think of the commit message as a brief
summary of what this commit does to the repository. This message will help Arthur and his
collaborators find key commits later in the future. In this context, “brief” means 72 characters
or less. GitKraken tries to help us out by telling us how many characters we’ve typed in our
commit message. Additionally, the commit message should be written in the imperative voice
– like a command. Another way to think about it is that the commit message should typically
complete the phrase, “If applied, this commit will…”. The screenshot below shows that Arthur
wrote Add Rproj and gitignore to project (red arrow 1).

In addition to the commit message, there is also a description box we can use to add more
details about the commit. Sometimes, this is unnecessary. However, when we do choose to
add a description, it is best practice to use it to explain what the commit does or why we chose
to do it rather than how it does whatever it does. That’s in the code. In the screenshot below,
you can see that Arthur added some bulleted notes to the description (red arrow 2).

Finally, Arthur will click the green commit button at the bottom of the commit panel (red
arrow 3). This will commit (save) a version of our repository that includes the changes to any
of the files in the Staged Files window.

And here is what his GitKraken screen looks like after committing.

810



Let’s pay special attention to what is being displayed in a couple of different areas. We’ll start
by zooming in on the commit panel.

At the top of the commit panel, we can see the short version of the commit ID – 4a394b. Below
that, we can see the commit message and description. Below that, we can see who created
the commit and when. This tends to be more useful when we are collaborating with others.
To the right of that information, GitKraken also shows us the commit ID for this commit’s
parent commit – 277451. Finally, it shows us the file changes that this commit applies to our
repository. More specifically, it shows us the changes that commit 4a394b makes to commit
277451.

811



At this point, you may be wondering what this whole parent-child thing is and why we keep
talking about it. The diagram below is a very simple graphical representation of how git views
our repository. It views it as a series of commits that chronologically build our repository
when they are applied to each other in sequence. Familial terms are often used in the git
community to describe the relationship between commits. For example, in the diagram below
commit 4a394b is a child of commit 288451. Child commits are always more recent than
parent commits. This knowledge is not incredibly useful to us at this point, but it can be
helpful when we start to learn about more advanced topics like merging commits. For now,
just be aware of the terminology.

812



It is also important to point out that Arthur’s most recent commit (4a394b) only exists in
his local repository. That is, the repository on his computer. He has not yet shared the
commit – or the new files associated with the commit – to the remote repository on GitHub.

How do we know? Well, one way we can tell is by looking at Arthur’s GitKraken window. In
the repository graph, the local repository (i.e., the little laptop icon) and the remote repository

813



(i.e., the little gray and white icon) are on different rows. Additionally, there is a little 1 next
to an up arrow displayed to the left of the main branch of our local repository in the left
panel of GitKraken. Both of these indicate that the most recent commits contained in each
repository are different. Specifically, that the local repository is one commit ahead of the
remote repository.

This concept is important to understand. In Google Docs, when we made a change to our
document locally, that change was automatically synced to Google’s servers. We didn’t have
to do anything to save/create a version of the document. We had to put in a little effort if we
wanted to name a particular version, but the version itself was already saved – identified using
a date-time stamp. Conversely, git does not automatically make commits (i.e., save snapshots
of the state of the files in our repository), nor does our local repository automatically sync up
with our remote repository (in this case, GitHub). We have to do both of these things manually.
This will create a little extra work for us, but it will also give us a lot more control.

As one additional check, Arthur can go look at the repository’s commit history on GitHub. As
shown in the screenshot below, the commit history still only shows one commit – the initial
commit.

814



Let’s quickly pause and recap what Arthur has done so far.

First, Arthur created a repository on GitHub. It was a remote repository because he accesses
it over the internet. Then, he cloned (i.e., made a copy of) the remote repository to his
computer. This copy is referred to as a local repository. Next, Arthur made some changes to
the repository locally and committed them. At this point, the local repository is 1 commit

815



ahead of the remote repository, and the changes that Arthur made locally are not currently
reflected on GitHub.

So, how does Arthur sync the changes he made locally with GitHub? He will push them to
GitHub, which GitKraken makes incredibly easy. All he needs to do is click the Push button
at the top of his GitKraken window (see below).

After doing so, we will once again see some changes. What changes do you notice in the
screenshot below?

816



In the repository graph, the local repository (i.e., the little laptop icon) and the remote repos-
itory (i.e., the little gray and white icon) are back on the same row. Additionally, the little 1
next to an up arrow is no longer displayed in the left panel. Both of these changes indicate
that the most recent commits contained in each repository are the same.

And if Arthur once again checks GitHub…

817



He will now see that the GitHub repository also has two commits. He can click on the text
that says 2 commits to view each commit in the commit history.

In the commit history, he can now see commit 4a394b7. Let’s take another pause here and
recap.

818



First, Arthur created a repository on GitHub. Then, he cloned the remote (i.e., GitHub)
repository to his computer. Next, Arthur made some changes to the repository locally and
committed them locally. Finally, he pushed the local commit up to GitHub. Now, his
GitHub repository and local repository are in sync with each other.

We realize that it probably seems like it took a lot of work for Arthur to get everything set up.
But in reality, all of the steps up to this point will only take a couple of minutes once you’ve
gone through them a few times.

Step 5: Keep adding and committing files

At this point, Arthur has his repositories all set up and is ready to start rocking and rolling
on his actual data analysis. To round out this example, Arthur will add some data to his
repository that he will eventually analyze using R.

The screenshot above shows that Arthur created a new folder inside the R project directory
called data. He created it in the same way he would create any other new folder in his
computer’s operating system. Then, he added a data set to the data folder he created. This
particular data set happens to be stored in an Excel file named form_20.xlsx.

Now, when Arthur checks GitKraken, this is what he sees in the commit panel.

819



Just like before, GitHub is telling Arthur that he has a new unstaged file in the repository.
Stop for a moment and think. What should Arthur do next?

Was your answer, “stage and commit the new file”? If so, slow down and think again. Remem-
ber, in general, we don’t ever want to commit our research data to our GitHub repository.
GitHub is not typically considered secure or private. So, how can Arthur keep the data in his
local repository so that he can work with it, keep his local repository synced with GitHub, but
make sure the data doesn’t get pushed up to GitHub?

Do you remember earlier when Arthur told git and GitHub to ignore the .DS_Store file? In
exactly the same way, Arthur can tell git and GitHub to ignore this data set. And once it’s
ignored, it won’t ever be pushed to GitHub. Remember, our local git repository only includes
files it’s tracking in commits, and it only pushes commits (and the files included in them) up
to GitHub.

In the screenshot below, Arthur added data/ to line 6 of the .gitignore file. He could have
added form_20.xlsx instead. That would have told git to ignore the form_20.xlsx data set
specifically. However, Arthur doesn’t want to push any data to GitHub – including any data
sets that he may add in the future. By adding data/ to the .gitignore file, he is telling git to
ignore the entire folder named data and all of the files it contains – now and in the future.

820



After saving the updated .gitignore file, the commit pane in GitKraken changes once again.

The new file data/form_20.xlsx is no longer showing up as an unstaged change. Instead, the
only unstaged change showing up is the edited .gitignore file. We can tell that the changes
to the .gitignore file are edits – as opposed to adding the file for the first time – because

821



there is a little pencil icon to the left of the file name instead of a little green plus icon. Now
what should Arthur do next?

Was your answer, “stage and commit the edited file”? If so, you are correct! Now it is safe for
Arthur to go ahead and commit these changes.

After doing so, he can see that the GitHub repository contains 3 commits. Additionally, as
shown the red box below, the data folder is nowhere to be found among the files contained in
the GitHub repository.

Arthur will now add one final file to the r4epi_example_project as part of this example. He
will add an Quartofile with a little bit of R code in it. The code will import form_20.xlsx
into the global environment as a data frame.

822



An then he will commit and push the data_01_import.Rmd to GitHub in the same way he
committed and pushed previous files to Github.

Arthur can continue adding files to his local repository and then pushing them to GitHub in
this fashion for the remainder of the time he is working on this project, and the introduction
to git and GitHub chapter discusses why he should consider doing so.

After going through this example, many students have three lingering questions:

1. How often should we commit?

2. How often should we push our commits to GitHub?

3. If we can’t use GitHub to share our data, how should we share data?

We will answer questions 1 & 2 immediately below. We will answer the third question in the
next example.

823

../intro_git_github/intro_git_github.qmd
../intro_git_github/intro_git_github.qmd


39.6 Committing and pushing

As we are learning to use git and GitHub, it is reasonable to ask how often we should commit
our work as we go along. For better or worse, there is no hard-and-fast rule we can give you
here. In Happy Git and GitHub for the useR, Dr. Jennifer (Jenny) Bryan writes that we
should commit “every time you finish a valuable chunk of work, probably many times a day.”14

This seems like a pretty good starting place to us.

Of course, a natural follow-up question is to ask how often we should push our commits to
GitHub. We could automatically push every commit we make to GitHub as soon as we make
it. However, this isn’t always a good idea. It is much easier to edit or rollback commits that
we have only made locally than it is to edit or rollback commits that we’ve pushed to our
remote repository. For example, if we accidentally include a data set in a commit and push
it to GitHub, this is a much bigger problem than if we accidentally include a data set in a
commit and catch it before we push to GitHub. For this reason, we don’t suggest that you
automatically push every commit you make to GitHub. So, how often should you push? Well,
once again, there is no hard-and-fast rule. And once again, we think Dr. Bryan’s advice is
a good starting point. She writes, “Do this [push] a few times a day, but possibly less often
than you commit.”14 It is also worth noting that how often you commit and push will also be
dictated, at least partially, by the dynamics of the group of people who are contributing to the
repository. So far, we have really only seen a repository with a single contributor (i.e., Arthur
Epi). That will change in the next example.

The advice above about committing and pushing may seem a little vague to you right now. It
is a little vague. We apologize for that. However, we believe it’s also the best we can do. On
the bright side, as you practice with git and GitHub, you will eventually fall into a rhythm
that works well for you. Just give it a little time!

39.7 Example 3: Contribute to a research project

When our research assistants begin helping us with data management and analysis projects,
we often have them start by going to the project’s GitHub repository to read the existing
documentation and clone all the existing code to their computer. This example is going to
walk through that process step-by-step. For demonstration purposes, we will work with the
example repository that our fictitious research assistant named Arthur Epi created in Example
2 above.

Note

It’s probably worth noting that in most real-world scenarios the roles here would be
reversed. That is, we (Brad or Doug) would have created the original repository and

824



Arthur would be working off of it. However, the example repository above was already
created using Arthur’s GitHub account, and we will continue to work off of it in this
example. If you are a research assistant working with us (i.e., Brad or Doug) in real life,
and using this example to walk yourself through getting started on a real project, you
should insert yourself (and your GitHub account) into Brad’s role (and GitHub account)
in the example below.

In this example, we’re going to work collaboratively with Arthur on the r4epi_example_project.
Arthur could have just emailed us all of the project files, but sometimes that might be many
files, some of them may be very large, and he runs the risk of forgetting to send some of them
by accident. Further, every time any of the contributors adds or updates a file, they will have
to email all the other contributors the new file(s) and an explanation of the updates they’ve
made. This process is typically inefficient and error prone. Conversely, Arthur could set up a
shared folder on a cloud-based file storage service like Dropbox, Google Drive, or OneDrive.
Doing so would circumvent the issues caused by emailing files that we just mentioned (i.e.,
many files, large files, forgetting files, and manually sending updates). However, Dropbox,
Google Drive, and OneDrive aren’t designed to take advantage of all that git and GitHub
have to offer (e.g., project documentation, versioning and version history, viewing differences
between code versions, issue tracking, creating static websites for research dissemination, and
more). Because Arthur created his repository on GitHub, all of the files and documentation
we need to get started assisting him are easily accessible to us. All, he has to do is send us the
repository’s web address, which is https://github.com/arthur-epi/r4epi_example_project.

After navigating to a GitHub repository, the first thing we typically want to do is read the
README. It should have some useful information for us about what the repository does, how
it is organized, and how to use it. Because this is a fictitious, minimal example for the book,
the current README in the r4epi_example_project project isn’t that useful, impressive,
or informative. Matias Singers maintains a list of great READMEs at the following link that
you may want to check out: https://github.com/matiassingers/awesome-readme. If you want
to see an example README from a real research project that we worked on, you can check
out this link: https://github.com/brad-cannell/detect_pilot_test_5w. After we read over the
README file, we are ready to start making edits and additions to the project. But how do
we do that?

While it is technically possible for us to edit code files directly on GitHub (see [Contributing
to R4Epi]), this is typically only a good idea for extremely minor edits (e.g., a typo in the
documentation). Typically, we will want to make a copy of all the code files on our computer
so that we can experiment with the edits we are making. Said another way, we can suggest
edits to R code files directly on GitHub, but we can’t run those files in R directly on GitHub
to make sure they do what we intend for them to do. To test our changes in R, we will need
all of the repository’s files on our local computer. And how do we do that?

825

https://github.com/arthur-epi/r4epi_example_project
https://github.com/matiassingers/awesome-readme
https://github.com/brad-cannell/detect_pilot_test_5w


39.7.1 Forking a repository

If your answer the question above was, “we clone the r4epi_example_project repository to
our computer” you were close, but that isn’t our best option here. While we technically can
clone public repositories that aren’t on our account, we can’t push any changes to them. And
this is a good thing! Think about it, do we really want any person out there on the internet
to be able to make changes to our repository anytime they want without any oversight from
us? No way!

In this case, forking the repository is going to be the better option. This is another funny
name, but we are once again just talking about making a copy of the repository. However,
this time we are copying the repository from the original GitHub account (i.e., Arthur’s) to
our GitHub account. With cloning, we were copying the repository from the original GitHub
account to our computer. Do you see the difference? Let’s try to visualize it.

826



The purple arrow above indicates that we are forking (i.e., making a copy of) the origi-
nal r4epi_example_project repository on Arthur’s GitHub account to Brad’s GitHub ac-
count. And doing so is really easy. All Brad has to do is log in to GitHub and navi-
gate to Arthur’s r4epi_example_project repository located at https://github.com/arthur-
epi/r4epi_example_project. Then, he needs to click on the Fork button located near the
top-right corner of the screen.

827

https://github.com/arthur-epi/r4epi_example_project
https://github.com/arthur-epi/r4epi_example_project


Then Brad will click the green Create fork button on the next page.

And after a few moments, this will create an entirely new repository on Brad’s GitHub account.
It will contain an exact copy of the all the files that were on the repository in Arthur’s GitHub
account, but Brad is the owner of this repository on his account (shown in the screenshot
below).

828



Because Brad is the owner of this repository, he can clone it to his local computer, work on
it, and push changes up to GitHub in exactly the same way that Arthur did in the example
above. Just to be clear, the changes that Brad pushes to his GitHub repository will have no
effect on Arthur’s GitHub repository.

Note

As we’ve pointed out multiple times in this chapter, we generally do not want to upload
research data to GitHub. Why? Because it isn’t typically considered private or secure.
However, in order for Brad to do work on this project, he will need to access the data
somehow. This will require Arthur to share to data with Brad through some means
other than GitHub. Different organizations have different rules about what is considered
secure. For example, it may be an encrypted email or it may be a link to a shared drive
on a secure server. However the data is shared, it is important for Brad to create the
same file structure on his computer that Arthur has on his computer. Otherwise,
the R code will not work on both computers. Remember from the example above that
Arthur created a data/ folder in his local repository and he moved the form_20.xlsx
data to that folder. Then, in the data_01_import Quartofile, he imports the data using
the relative path data/form_20.xlsx. In the chapter on file paths we discussed the
advantages of using relative file paths when working collaboratively. Just remember, in
order for this relative file path to work identically on Arthur’s computer and Brad’s
computer, the folder structure and file names must also be identical. So, if Brad put
the form_20.xlsx data in a folder in his local repository called data sets/ instead of

829

../file_paths/file_paths.qmd


data/, then the code in the data_01_import Quartofile would throw an error.

Notice that in the diagram above, Arthur’s original repository is totally unaffected by any
changes that Brad is pushing from his local computer to the repository on his GitHub account.
There is no arrow from Brad’s remote repository going into Arthur’s remote repository. Again,
this is a good thing. Literally anyone else in the world with a GitHub account could just
as easily fork the repository and start making changes. If they also had the ability to make
changes to the original repository at will, they could potentially do a lot of damage!

However, in this case, Arthur and Brad do know each other and they are working collabora-
tively on this project. And at some point, the work that Brad is doing needs to be synced
up with the work that Arthur is doing. In order to make that happen, Brad will need to
send Arthur a request to pull the changes from Brad’s remote repository into Arthur’s remote
repository. This is called a pull request.

830



39.7.2 Creating a pull request

To make this section slightly more realistic, let’s say that Brad adds some code to
data_01_import.Qmd. Specifically, he adds some code that will coerce the date_received
column from character strings to dates (code below).

831



Then, Brad commits the changes and pushes them up to his GitHub account. Now, when
he checks his GitHub account he can see that his remote repository is 1 commit ahead of
Arthur’s remote repository. And that makes sense, right? Brad just updated the code in
data_01_import.Qmd, committed that changed, and pushed the commit to his GitHub account,
but nothing has changed in the repository on Arthur’s GitHub account.

832



Now, Brad needs to create a pull request. This pull request will let Arthur know that Brad
has made some changes to the code that he wants to share with Arthur. To do so, Brad will
click Contribute and then click the green Open pull request button as shown below.

The top section of the next screen, which is outlined in red below, allows Brad to select the
repository and branch on his GitHub account that he wants to share with Arthur (to the right
of the arrow). More specifically, he is sending a request to Arthur asking him to merge his
code into Arthur’s code. In this case, the code he wants to ask Arthur to merge is on the main
branch of the brad-cannell/r4epi_example_project repository (Brad’s repository only
has one branch – the main branch – at this point). To the left of the arrow, Brad can select
the repository and branch on Arthur’s GitHub account that he wants to ask Arthur to merge
the code into. In this case, the main branch of the arthur-epi/r4epi_example_project
repository (Arthur’s repository only has the main branch at this point as well).

Below the red box, GitHub is telling Brad about the commits that will be sent in this pull
request and the changes that will be made to Arthur’s files if he merges the pull request
into his repository. In this case, only one file in Arthur’s repository would be altered –
data_01_import.Rmd. Below that, Brad can see that the exact differences between his version
of data_01_import.Rmd and the version that currently exists in Arthur’s repository. How cool
is that that Brad and Arthur can actually see exactly how this pull request changes the file
state down to individual lines of code?

Because Brad is satisfied with what he sees here, he clicks the green Create pull request
button shown in the middle right of the screenshot below.

833



Let’s pause here and get explicit about two things.

1. As we’ve tried to really drive home above, this pull request will not automatically make
any changes to Arthur’s repository. Rather, it will only send Arthur Brad’s code, ask him
to review it, and then allow him to choose whether to incorporate it into his repository
or not.

834



2. Pull requests are sent at the branch level not at the file level. Meaning, if Arthur
accepts Brad’s pull request, it will make all of the files on his main branch identical
to all of the files on Brad’s main branch (the main branch because that is the branch
Brad chose in the screenshot above – and currently the only branch in either repository).
In this case, that means that the only file that would change as a result of copying
over the entire branch is data_01_import.Rmd. However, if Brad had made changes to
data_01_import.Rmd and another file, Arthur would only have the option to merge both
files or neither file. He would not have the option of merging data_01_import.Rmd only.
Pull requests merge the entire branch, not specific files. We are emphasizing this because
this may affect how you commit, push, and create pull requests when you are working
collaboratively. More specifically, you may want to commit, push, and send pull requests
more frequently than you would if you were working on a project independently.

On the next screen, Brad is given an opportunity to give the pull request a title and add a
message for Arthur that give him some additional details. In general, it’s a good idea to fill
this part out using similar conventions to those described above for commit messages.

After filling out the commit message, Brad will click the green Create pull request button
on last time, and he is done. This will send Arthur the pull request.

The next time Arthur checks the r4epi_example_project on GitHub, he will see that he has
a new pull request.

835



If he clicks on the text Pull requests text, he will be taken to his pull requests page. It will
show him all pending pull requests. In this case, there is just the one pull request that Brad
sent.

When he clicks on it, he will see a screen like the one in the screenshot below. Scanning from
top to bottom, it will tell him which branch Brad is requesting to merge the code into, show

836



him the message Brad wrote, tell him that he can merge this branch without any conflicts if
he so chooses, and give him an opportunity to write a message back to Brad before deciding
whether to merge this pull request or close it.

He also has the option to view some additional details by clicking the Commits tab, Checks
tab, and/or Files changed tab towards the top of the screen. Let’s say he decides to click on

837



the Files changed tab.

On the Files changed tab, Arthur can see each of the files that the pull request would change
if he were to merge it into his repository (in this case, only one file). For each file, he can see
(and even comment on) each specific line of code that would change. In this case, Arthur is
pleased with the changes and navigates back to the Conversation tab by clicking on it.

Back on the Conversation tab (see screenshot below), Arthur has some options. If he wants
more clarification about the pull request, he can send leave a comment for Brad using the
comment box near the bottom of the screen. If he knows that he does NOT want to merge
this pull request into his code, he can click the Close pull request button at the bottom of
the screen. This will close the pull request and his code will remain unchanged. In this case,
Arthur wants to incorporate the changes that Brad sent over, so he clicks the green Merge
pull request button in the middle of the screen.

838



Then, he is given an opportunity to add some details about the changes this merge will make
to the repository once it is committed. You can once again think of this message as having a
very similar purpose to commit messages, which were discussed above. In fact, it will appear
as a commit in the repository’s commit history.

Finally, he clicks the green Confirm merge button.

839



And if Arthur navigates back to his commit history page, he can see two new commits. Brad’s
commit with the updated data_01_import.Qmd file, and the commit that was automatically
created when Arthur merged the branches together.

840



Now, Arthur takes a look at data_01_import.Qmd on his computer. To his surprise, the code
to coerce date_received into dates isn’t there. Why not?

841



Well, let’s open GitKraken on Arthur’s computer and see if we can help him figure it out.
In the repository graph, Arthur’s local repository (i.e., the little laptop icon) and the remote
repository (i.e., the little gray and white icon) are on different rows. Additionally, there is a
little 2 next to a down arrow displayed to the left of the main branch of our local repository
in the left panel of GitKraken. Both of these indicate that the most recent commits contained
in each repository are different. Specifically, that the local repository is two commits behind
the remote repository.

842



So, let’s pause here for a second and review what we’ve done so far. As shown in the figure
below:

1. Brad made some updates to the code on his computer and then committed those changes
to his local repository. At this point, his local repository is out of sync with his remote
repository, Arthur’s remote repository, and Arthur’s local repository.

2. Next, Brad pushed that commit from his local repository up to his remote repository on
GitHub. After doing so, his local repository and remote repository are synced with each
other, but they are still out of sync with Arthur’s remote repository and Arthur’s local
repository.

3. Then, Brad created a pull request for Arthur. The request was for Arthur to pull the
latest commit from Brad’s remote repository into Arthur’s remote repository.

4. Arthur accepted and merged Brad’s pull request. After doing so, his remote reposi-
tory, Brad’s remote repository, and Brad’s local repository are all contain the updated
data_01_import.Qmd file, but Arthur’s local repository still does not.

843



So, how does Arthur get his local repository in sync with his remote repository?

Arthur just needs to use the pull command to download the files from his updated remote
repository and merge them into his local repository (step 5 below).

And GitKraken makes pulling the files from his remote repository really easy. All Arthur needs

844



to do is click the pull button shown in the screenshot below. GitKraken will download (also
called fetch) the updated repository and merge the changes into his local repository.

And as shown in the screenshot below, Arthur can now see that his local repository is now in
sync with his remote repository once again! �

845



But, what about Brad’s repository? Well, as you can see in the screenshot below, Brad’s
remote repository is now 1 commit behind Arthur’s. Why?

This one is kind of weird/tricky. Although the code in Brad’s repository is now identical
to the code in Arthur’s repository, the commit history is not. Remember, Arthur’s commit
history from above? When he merged Brad’s code into his own, that automatically created
an additional commit. And that additional commit does not currently exist in Brad’s commit
history. It’s an easy fix though!

All Brad needs to do is a quick fetch from Arthur’s remote repository to merge that last

846



commit into his commit history, and then pull it down to his local repository.

To do so, Brad will first click Fetch upstream followed by the green Fetch and merge but-
ton.

After a few seconds, GitHub will show him that his remote repository is now synced up with

847



Arthur’s remote repository. All he as to do now is a quick pull in GitHub.

And now we have seen the basic process for collaboratively coding with git and GitHub. Don’t
feel bad if you are still feeling a little bit confused. Git and GitHub are confusing at times
even for experienced programmers. But that doesn’t mean that they aren’t still valuable tools!
They are!

We also recognize that it might seem like that was a ton of steps above. Again, we went
through this process slowly and methodically because we are all trying to learn here. In a
real-life project with two experienced collaborators, the steps in this example would typically
be completed in a matter of minutes. No big deal.

39.8 Summary

There is so much more to learn about git and GitHub, but that’s not what this book is about.
So, we will stop here. We hope the examples above demonstrate some of the potential value of
using git and GitHub in your project workflow. We also hope they give you enough information
to get you started.

Here are some free resources we recommend if you want to learn even more:

1. Chacon S, Straub B. Pro Git. Second. Apress; 2014. Accessed June 13, 2022. https://git-
scm.com/book/en/v2

848



2. GitHub. Getting started with GitHub. GitHub Docs. Accessed June 13, 2022.
https://ghdocs-prod.azurewebsites.net/en/get-started

3. Bryan J. Happy Git and GitHub for the useR.; 2016. Accessed June 2, 2022.
https://happygitwithr.com/index.html

4. Keyes D. How to Use Git/GitHub with R. R for the Rest of Us. Published February
13, 2021. Accessed June 13, 2022. https://rfortherestofus.com/2021/02/how-to-use-git-
github-with-r/

5. Wickham H, Bryan J. Chapter 18 Git and GitHub. In: R Packages. Accessed June 13,
2022. https://r-pkgs.org/git.html

849



Part VIII

Presenting Results

850



40 Creating Tables with R and Microsoft Word

At this point, you should all know that it is generally a bad idea to submit raw R output as
part of a report, presentation, or publication. You should also understand when it is most
appropriate to use tables, as opposed to charts and graphs, to present your results. If not,
please stop here and read Chapter 7 of Successful Scientific Writing, which discusses the “why”
behind much of what we will show you “how” to do in this chapter.15

R for Epidemiology is predominantly a book about using R to manage, visualize, and ana-
lyze data in ways that are common in the field of epidemiology. However, in most modern
work/research environments it is difficult to escape the requirement to share your results in a
Microsoft Word document. And often, because we are dealing with data, those results include
tables of some sort. However, not all tables communicate your results equally well. In this
chapter, we will walk you through the process of starting with some results you calculated in
R and ending with a nicely formatted table in Microsoft Word. Specifically, we are going to
create a Table 1.

40.1 Table 1

In epidemiology, medicine, and other disciplines, “Table 1” has a special meaning. Yes, it’s the
first table shown to the reader of your article, report, or presentation, but the special meaning
goes beyond that. In many disciplines, including epidemiology, when you speak to a colleague
about their “Table 1” it is understood that you are speaking about a table that describes
(statistically) the relevant characteristics of the sample being studied. Often, but not always,
the sample being studied is made up of people, and the relevant descriptive characteristics
about those people include sociodemographic and/or general health information. Therefore, it
is important that you don’t label any of your tables as “Table 1” arbitrarily. Unless you have
a really good reason to do otherwise, your Table 1 should always be a descriptive overview of
your sample.

Here is a list of other traits that should consider when creating your Table 1:

• All other formatting best practices that apply to scientific tables in general. This in-
cludes formatting requirements specific to wherever you are submitting your table (e.g.,
formatting requirements in the American Journal of Public Health).

851



• Table 1 is often, but not always, stratified into subgroups (i.e., descriptive results are
presented separately for each subgroup of the study sample in a way that lends itself to
between-group comparisons).

• When Table 1 is stratified into subgroups, the variable that contains the subgroups is
typically the primary exposure/predictor of interest in your study.

40.2 Opioid drug use

As a motivating example, let’s say that we are working at the North Texas Regional Health
Department and have been asked to create a report about drug use in our region. Our stake-
holders are particularly interested in opioid drug use. To create this report, we will analyze
data from a sample of 9,985 adults who were asked about their use of drugs. One of the first
analyses that we did was a descriptive comparison of the sociodemographic characteristics of
3 subgroups of people in our data. We will use these analyses to create our Table 1.

You can view/download the data by clicking here

Rows: 9985 Columns: 4
-- Column specification --------------------------------------------------------
Delimiter: ","
dbl (4): age, edu, female, use

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.

var cat n n_total percent se t_crit lcl
1 use_f Non-users 8315 9985 83.274912 0.3734986 1.960202 82.52992
2 use_f Use other drugs 1532 9985 15.343015 0.3606903 1.960202 14.64925
3 use_f Use opioid drugs 138 9985 1.382073 0.1168399 1.960202 1.17080

ucl
1 83.994296
2 16.063453
3 1.630841

var use n mean sd t_crit sem lcl ucl
1 age 0 8315 36.80173 9.997545 1.960249 0.10963828 36.58681 37.01665
2 age 1 1532 21.98362 2.979511 1.961515 0.07612296 21.83431 22.13294
3 age 2 138 17.34740 3.081049 1.977431 0.26227634 16.82877 17.86603

852

https://github.com/brad-cannell/r4epi/blob/master/data/drugs.csv


row_var row_cat col_var col_cat n n_row n_total percent_total se_total
1 use 0 female_f No 3077 8315 9985 30.8162243 0.46210382
2 use 0 female_f Yes 5238 8315 9985 52.4586880 0.49979512
3 use 1 female_f No 796 1532 9985 7.9719579 0.27107552
4 use 1 female_f Yes 736 1532 9985 7.3710566 0.26150858
5 use 2 female_f No 91 138 9985 0.9113671 0.09510564
6 use 2 female_f Yes 47 138 9985 0.4707061 0.06850118
t_crit_total lcl_total ucl_total percent_row se_row t_crit_row lcl_row

1 1.960202 29.9178650 31.7293461 37.00541 0.5295162 1.960202 35.97359
2 1.960202 51.4781679 53.4373162 62.99459 0.5295162 1.960202 61.95076
3 1.960202 7.4565108 8.5197562 51.95822 1.2768770 1.960202 49.45247
4 1.960202 6.8745702 7.9003577 48.04178 1.2768770 1.960202 45.54583
5 1.960202 0.7426382 1.1179996 65.94203 4.0488366 1.960202 57.62323
6 1.960202 0.3538217 0.6259604 34.05797 4.0488366 1.960202 26.61786

ucl_row
1 38.04924
2 64.02641
3 54.45417
4 50.54753
5 73.38214
6 42.37677

row_var row_cat col_var col_cat n n_row n_total
1 use 0 edu_f Less than high school 3908 8315 9985
2 use 0 edu_f High school 2494 8315 9985
3 use 0 edu_f Some college 915 8315 9985
4 use 0 edu_f College graduate 998 8315 9985
5 use 1 edu_f Less than high school 322 1532 9985
6 use 1 edu_f High school 567 1532 9985
7 use 1 edu_f Some college 321 1532 9985
8 use 1 edu_f College graduate 322 1532 9985
9 use 2 edu_f Less than high school 36 138 9985
10 use 2 edu_f High school 36 138 9985
11 use 2 edu_f Some college 40 138 9985
12 use 2 edu_f College graduate 26 138 9985

percent_total se_total t_crit_total lcl_total ucl_total percent_row
1 39.1387081 0.48845160 1.960202 38.1855341 40.1002400 46.99940
2 24.9774662 0.43322925 1.960202 24.1379137 25.8362747 29.99399
3 9.1637456 0.28874458 1.960202 8.6132458 9.7456775 11.00421
4 9.9949925 0.30017346 1.960202 9.4217947 10.5989817 12.00241
5 3.2248373 0.17680053 1.960202 2.8957068 3.5899942 21.01828
6 5.6785178 0.23161705 1.960202 5.2411937 6.1499638 37.01044

853



7 3.2148222 0.17653492 1.960202 2.8862151 3.5794637 20.95300
8 3.2248373 0.17680053 1.960202 2.8957068 3.5899942 21.01828
9 0.3605408 0.05998472 1.960202 0.2601621 0.4994549 26.08696
10 0.3605408 0.05998472 1.960202 0.2601621 0.4994549 26.08696
11 0.4006009 0.06321673 1.960202 0.2939655 0.5457064 28.98551
12 0.2603906 0.05100282 1.960202 0.1773397 0.3821865 18.84058

se_row t_crit_row lcl_row ucl_row
1 0.5473707 1.960202 45.92799 48.07358
2 0.5025506 1.960202 29.01822 30.98824
3 0.3432094 1.960202 10.34925 11.69521
4 0.3564220 1.960202 11.32112 12.71881
5 1.0412961 1.960202 19.04975 23.13209
6 1.2339820 1.960202 34.62587 39.46012
7 1.0401075 1.960202 18.98696 23.06466
8 1.0412961 1.960202 19.04975 23.13209
9 3.7515606 1.960202 19.42163 34.07250
10 3.7515606 1.960202 19.42163 34.07250
11 3.8761776 1.960202 22.00774 37.12261
12 3.3408449 1.960202 13.13952 26.26721

Above, we have the results of several different descriptive analyses we did in R. Remember
that we never want to present raw R output. Perhaps you’ve already thought to yourselves,
“wow, these results are really overwhelming. We’re not sure what we’re even looking at.” Well,
that’s exactly how many of the people in your audience will feel as well. In its current form,
this information is really hard for us to process. We want to take some of the information
from the output above and use it to create a Table 1 in Word that is much easier to read.

Specifically, we want our final Table 1 to look like this:

854



You may also click here to view/download the Word file that contains Table 1.

Now that you’ve seen the end result, let’s learn how to make this Table 1 together, step-by-step.
Go ahead and open Microsoft Word now if you want to follow along.

40.3 Table columns

The first thing we typically do is figure out how many columns and rows our table will need.
This is generally pretty straightforward; although, there are exceptions. For a basic Table 1
like the one we are creating above we need the following columns:

One column for our row headers (i.e., the names and categories of the variables we are pre-
senting in our analysis).

855

https://www.dropbox.com/s/bu8r81jhzr2r3cj/final_table_01.docx?dl=0


One column for each subgroup that we will be describing in our table. In this case, there are
3 subgroups so we will need 3 additional columns.

So, we will need 4 total columns.

856



Note

If you are going to describe the entire sample overall without stratifying it into subgroups
then you would simply have 2 columns. One for the row headers and one for the values.

40.4 Table rows

Next, we need to figure out how many rows our table will need. This is also pretty straight-
forward. Generally, we will need the following rows:

One row for the title. Some people write their table titles outside (above or below) the actual
table. We like to include the title directly in the top row of the table. That way, it moves with
the table if the table gets moved around.

One row for the column headers. The column headers generally include a label like “Character-
istic” for the row headers column and a descriptive label for each subgroup we are describing
in our table.

857



One row for each variable we will analyze in our analysis. In this example, we have three –
age, sex, and education. NOTE that we do NOT need a separate row for each category of
each variable.

One row for the footer.

858



So, we will need 6 total rows.

40.5 Make the table skeleton

Now that we know we need to create a table with 4 columns and 6 rows, let’s go ahead and
do that in Microsoft Word. We do so by clicking the Insert tab in the ribbon above our
document. Then, we click the Table button and select the number of columns and rows we
want.

40.6 Fill in column headers

Now we have our table skeleton. The next thing we would typically do is fill in the column
headers. Remember that our column headers look like this:

859



Here are a couple of suggestions for filling in your column headers:

• Put your column headers in the second row of the empty table shell. The title will
eventually go into the first row. We don’t add the title right away because it is typically
long and will distort the table’s dimensions. Later, we will see how to horizontally merge
table cells to remove this distortion, but we don’t want to do that now. Right now, we
want to leave all the cells unmerged so that we can easily resize our columns.

• The first column header is generally a label for our row headers. Because the rows are
typically characteristics of our sample, we almost always use the word “characteristic”
here. If you come up with a better word, please feel free to use it.

• The rest of the column headers are generally devoted to the subgroups we are describing.

– The subgroups should be ordered in a way that is meaningful. For example, by
level of severity or chronological order. Typically, ordering in alphabetical order
isn’t that meaningful.

– The subgroup labels should be informative and meaningful, but also succinct. This
can sometimes be a challenge.

– we have seen terms like “Value”, “All”, and “Full Sample” used when Table 1 was
describing the entire sample overall rather than describing the sample by subgroups.

860



40.6.1 Group sample sizes

You should always include the group sample size in the column header. They should typically
be in the format “(n = sample size)” and typed in the same cell as the label, but below the
label (i.e., hit the return key). The group sample sizes can often provide important context to
the statistics listed below in the table, and clue the reader into missing data issues.

40.6.2 Formatting column headers

we generally bold our column headers, horizontally center them, and vertically align them to
the bottom of the row.

At this point, your table should look like this in Microsoft Word:

861



40.7 Fill in row headers

The next thing we would typically do is fill in the row headers. Remember, that our row
headers look like this:

862



Here are a couple of suggestions for filling in your row headers:

• The variables should be organized in a way that is meaningful. In our example, we have
only 3 sociodemographic variables. However, if we also had some variables about health
status and some variables related to criminal history, then we would almost certainly
want the variables that fit into each of these categories to be vertically arranged next to
each other.

• Like the column headers, the row headers should be informative and meaningful, but also
succinct. Again, this can sometimes be a challenge. In our example, we use “Age”, “Sex”,
and “Education”. Something like “Highest level of formal education completed” would
have also been informative and meaningful, but not succinct. Something like “Question
6” is succinct, but isn’t informative or meaningful at all.

40.7.1 Label statistics

You should always tell the reader what kind of statistics they are looking at – don’t assume that
they know. For example, the highlighted numbers in figure @ref(fig:what-stats) are 36.8 and
10. What is 36.8? The mean, the median? The percentage of people who had a non-missing
value for age? What is 10? The sample size? The standard error of the mean? An odds ratio?
You know that 36.8 is a mean and 10 is the standard deviation because we identified what they
were in the row header. @ref(fig:identify-stats) When you label the statistics in the row headers
as we’ve done in our example, they should take the format you see in figure @ref(fig:identify-
stats). That is, the variable name, followed by a comma, followed by the statistics used in
that row. Also notice the use of parentheses. We used parentheses around the letters “sd”
(for standard deviation) because the numbers inside the parentheses in that row are standard
deviations. So, the label used to identify the statistics should give the reader a blueprint for
interpreting the statistics that matches the format of the statistics themselves.

863



Figure 40.1: What are these numbers?

Figure 40.2: Identifying statistics in the row header.

864



The statistics can, and sometimes are, labeled in the column header instead of the row header.
This can sometimes be a great idea. However, it can also be a source of confusion. For
example, in the figure below, the column headers include labels (i.e., n (%)) for the statistics
below. However, not all the statistics below are counts (n) and percentages!

Even though the Age variable has its own separate statistics label in the row header, this is still
generally a really bad idea! Therefore, we highly recommend only labeling your statistics in the
column header when those labels are accurate for every value in the column. For example:

865



40.7.2 Formatting row headers

• Whenever possible, make sure that variable name and statistic identifier fit on one line
(i.e., they don’t carry over into the line below).

• Always type the category labels for categorical variables in the same cell as the variable
name. However, each category should have its own line (i.e., hit the return key).

• Whenever possible, make sure that each category label fits on one line (i.e., it doesn’t
carry over into the line below).

• Indent each category label two spaces to the left of the variable name.

• Hit the return key once after the last category for each categorical variable. This creates
a blank line that adds vertical separation between row headers and makes them easier
to read.

At this point, your table should look like this in Microsoft Word:

866



40.8 Fill in data values

So, we have some statistics visible to us on the screen in RStudio. Somehow, we have to get
those numbers over to our table in Microsoft Word. There are many different ways we can do
this. We’re going to compare a few of those ways here.

40.8.1 Manually type values

One option is to manually type the numbers into your word document.

� If you are in a hurry, or if you just need to update a small handful of statistics in your table,
then this option is super straightforward. However, there are at least two big problems with
this method.

� First, it is extremely error prone. Most people are very likely to type a wrong number or
misplace a decimal here and there when they manually type statistics into their Word tables.

� Second, it isn’t very scalable. What if you need to make very large tables with lots and lots
of numbers? What if you update your data set and need to change every number in your Word
table? This is not fun to do manually.

867



40.8.2 Copy and paste values

Another option is to copy and paste values from RStudio into Word. This option is similar
to above, but instead of typing each value into your Word table, you highlight and copy the
value in RStudio and paste it into Word.

� If you are in a hurry, or if you just need to update a small handful of statistics in your table,
then this option is also pretty straightforward. However, there are still issues associated with
this method.

� First, it is still somewhat error prone. It’s true that the numbers and decimal placements
should always be correct when you copy and paste; however, you may be surprised by how
often many people accidentally paste the values into the wrong place or in the wrong order.

� Second, I’ve noticed that there are often weird formatting things that happen when we copy
from RStudio and paste into Word. They are usually pretty easy to fix, but this is still a small
bit of extra hassle.

� Third, it isn’t very scalable. Again, if we need to make very large tables with lots and lots
of numbers or update our data set and need to change every number in your Word table, this
method is time-consuming and tedious.

40.8.3 Knit a Word document

So far, we have only used the HTML Notebook output type for our R markdown files. However,
it’s actually very easy have RStudio create a Word document from you R markdown files. We
don’t have all the R knowledge we need to fully implement this method yet, so we don’t want
to confuse you by going into the details here. But, we do want to mention that it is possible.

� The main advantages of this method are that it is much less error prone and much more
scalable than manually typing or copying and pasting values.

� The main disadvantages are that it requires more work on the front end and still requires
you to open Microsoft Word a do a good deal of formatting of the table(s).

40.8.4 flextable and officer

A final option we’ll mention is to create your table with the flextable and officer packages. This
is our favorite option, but it is also definitely the most complicated. Again, we’re not going to
go into the details here because they would likely just be confusing for most readers.

� This method essentially overcomes all of the previous methods’ limitations. It is the least
error prone, it is extremely scalable, and it allows us to do basically all the formatting in R.
With a push of a button we have a complete, perfectly formatted table output to a Word

868

https://rmarkdown.rstudio.com/lesson-9.html
https://davidgohel.github.io/flextable/index.html
https://davidgohel.github.io/officer/


document. If we update our data, we just push the button again and we have a new perfectly
formatted table.

� The primary downside is that this method requires you to invest some time in learning these
packages, and requires the greatest amount of writing code up front. If you just need to create
a single small table that you will never update, this method is probably not worth the effort.
However, if you absolutely need to make sure that your table has no errors, or if you will need
to update your table on a regular basis, then this method is definitely worth learning.

40.8.5 Significant digits

No matter which of the methods above you choose, you will almost never want to give your
reader the level of precision that R will give you. For example, the first row of the R results
below indicates that 83.274912% of our sample reported that they don’t use drugs.

var cat n n_total percent se t_crit lcl
1 use_f Non-users 8315 9985 83.274912 0.3734986 1.960202 82.52992
2 use_f Use other drugs 1532 9985 15.343015 0.3606903 1.960202 14.64925
3 use_f Use opioid drugs 138 9985 1.382073 0.1168399 1.960202 1.17080

ucl
1 83.994296
2 16.063453
3 1.630841

Notice the level of precision there. R gives us the percentage out to 6 decimal places. If you
fill your table with numbers like this, it will be much harder for your readers to digest your
table and make comparisons between groups. It’s just the way our brains work. So, the logical
next question is, “how many decimal places should we report?” Unfortunately, this is another
one of those times that we have to give you an answer that may be a little unsatisfying. It is
true that there are rules for significant figures (significant digits); however, the rules are not
always helpful to students in my experience. Therefore, we’re going to share with you a few
things we try to consider when deciding how many digits to present.

• we don’t recall ever presenting a level of precision greater than 3 decimal places in
the research we’ve been involved with. If you are working in physics or genetics and
measuring really tiny things it may be totally valid to report 6, 8, or 10 digits to the
right of the decimal. But, in epidemiology – a population science – this is rarely, if ever,
useful.

• What is the overall message we are trying to communicate? That is the point of the table,
right? We’re trying to clearly and honestly communicate information to our readers. In
general, the simpler the numbers are to read and compare, the clearer the communication.
So, we tend to err on the side of simplifying as much as possible. For example, in the

869

https://en.wikipedia.org/wiki/Significant_figures


R results below, we could say that 83.274912% of our sample reported that they don’t
use drugs, 15.343015% reported that they use drugs other than opioids, and 1.382073%
reported that they use opioid drugs. Is saying it that way really more useful than saying
that “83% of our sample reported that they don’t use drugs, 15% reported that they
use drugs other than opioids, and 1% reported that they use opioid drugs”? Are we
missing any actionable information by rounding our percentages to the nearest integer
here? Are our overall conclusions about drug use any different? No, probably not. And,
the rounded percentages are much easier to read, compare, and remember.

• Be consistent – especially within a single table. We have experienced some rare occasions
where it made sense to round one variable to 1 decimal place and another variable to 3
decimal places in the same table. But, circumstances like this are definitely the exception.
Generally speaking, if you round one variable to 1 decimal place then you want to round
them all to one decimal place.

Like all other calculations we’ve done in this book, we suggest you let R do the heavy lifting
when it comes to rounding. In other words, have R round the values for you before you move
them to Word. R is much less likely to make a rounding error than you are! You may recall that
we learned how to round in the chapter on numerical descriptions of categorical variables.

40.8.6 Formatting data values

Now that we have our appropriately rounded values in our table, we just need to do a little
formatting before we move on.

First, make sure to fix any fonts, font sizes, and/or background colors that may have been
changed if you copied and pasted the values from RStudio into Word.

Second, make sure the values line up horizontally with the correct variable names and category
labels.

Third, we tend to horizontally center all our values in their columns.

At this point, your table should look like this in Microsoft Word:

870

../categorical_variables/categorical_variables.qmd


40.9 Fill in title

At this point in the process, we will typically go ahead and add the title to the first cell of
our Word table. The title should always start with “Table #.” In our case, it will start with
“Table 1.” In general, we use bold text for this part of the title. What comes next will change
a little bit from table to table but is extremely important and worth putting some thought
into.

Remember, all tables and figures need to be able to stand on their own. What does that
mean? It means that if we pick up your report and flip straight to the table, we should be
able to understand what it’s about and how to read it without reading any of the other text
in your report. The title is a critical part of making a table stand on its own. In general, your
title should tell the reader what the table contains (e.g., sociodemographic characteristics) and
who the table is about (e.g., results of the Texas Opioid Study). We will usually also add the
size of the sample of people included in the table (e.g., n = 9985) and the year the data was
collected (e.g., 2020).

In different circumstances, more or less information may be needed. However, always ask
yourself, “can this table stand on its own? Can most readers understand what’s going on in
this table even if they didn’t read the full report?”

At this point, your table should look like this in Microsoft Word:

871



Don’t worry about your title being all bunched up in the corner. We will fix it soon.

40.10 Fill in footnotes

Footnotes are another tool we can use to help our table stand on its own. The footnotes give
readers additional information that they may need to read and understand our table. Again,
there are few hard and fast rules regarding what footnotes you should include, but we can give
you some general categories of things to think about.

First, use footnotes to explain any abbreviations in your table that aren’t standard and broadly
understood. These abbreviations are typically related to statistics used in the table (e.g., RR
= risk ratio) and/or units of measure (e.g., mmHg = millimeters of mercury). Admittedly,
there is some subjectivity associated with “standard and broadly understood.” In our example,
we did not provide a footnote for “n”, “sd”, or “%” because most researchers would agree that
these abbreviations are standard and broadly understood, but we typically do provide footnotes
for statistics like “OR” (odds ratio) and “RR” (relative risk or risk ratio).

Additionally, we mentioned above that it is desirable, but sometimes challenging, to get your
variable names and category labels to fit on a single line. Footnotes can sometimes help with
this. In our example, instead of writing “Age in years, mean (sd)” as a row header we wrote
“Age, mean (sd)” and added a footnote that tells the reader that age is measured in years.
This may not be the best possible example, but hopefully you get the idea.

872



40.10.1 Formatting footnotes

When using footnotes, you need to somehow let the reader know which element in the table
each footnote goes with. Sometimes, there will be guidelines that require you to use certain
symbols (e.g., *, †, and ‡), but we typically use numbers to match table elements to footnotes
when we can. In the example below, there is a superscript “1” immediately after the word
“Age” that lets the reader know that footnote number 1 is adding additional information to
this part of the table.

If you do use numbers to match table elements to footnotes, make sure you do so in the order
people read [English], which is left to right and top to bottom. For example, the following
would be inappropriate because the number 2 comes before the number 1 when reading from
top to bottom:

873



As another example, the following would be inappropriate because the number 2 comes before
the number 1 when reading from left to right:

Additionally, when using numbers to match table elements to footnotes, it’s a good idea to
superscript the numbers in the table. This makes it clear that the number is being used to
identify a footnote rather than being part of the text or abbreviation. Formatting a number

874



as a superscript is easy in Microsoft Word. Just highlight the number you want to format and
click the superscript button.

At this point, your table should look like this in Microsoft Word:

40.11 Final formatting

We have all of our data and explanatory text in our table. The last few remaining steps are
just about formatting our table to make it as easy to read and digest as possible.

40.11.1 Adjust column widths

As I’ve already mentioned more than once, we don’t want our text carryover onto multiple
lines whenever we can help it. In my experience, this occurs most often in the row headings.
Therefore, we will often need to adjust (widen) the first column of our table. You can do that
by clicking on the black border that separates the columns and moving your mouse left or
right.

After you adjust the width of your first column, the widths of the remaining columns will
likely be uneven. To distribute the remaining space in the table evenly among the remaining
columns, first select the columns by clicking immediately above the first column you want to
select and dragging your cursor across the remaining columns. Then, click the layout tab in
the ribbon above your document and the Distribute Columns button.

875



In our particular example, there was no need to adjust column widths because all of our text
fit into the default widths.

40.11.2 Merge cells

Now, we can finally merge some cells so that our title and footnote spread the entire width of
the table. We waited until now to merge cells because if we had done so earlier it would have
made the previous step (i.e., adjusting column widths) more difficult.

To spread our title out across the entire width of the table, we just need to select all the cells
in the first row, then right click and select merge cells.

After merging the footnote cells in exactly the same way, your table should look like this:

40.11.3 Remove cell borders

The final step is to clean up our borders. In my experience, students like to do all kinds of
creative things with cell borders. However, when it comes to borders, keeping it simple is
usually the best approach. Therefore, we will start by removing all borders in the table. We
do so by clicking the little cross with arrowheads that pops up diagonal to the top-left corner
of the table when you move your mouse over it. Clicking this button will highlight your entire
table. Then, we will click the downward facing arrow next to the borders button in the ribbon
above your document. Then, we will click the No Border option.

876



Our final step will be to add a single horizontal border under the title, a single horizontal
border under the column header row, and a single horizontal border above the footnotes. We
will add the borders by highlighting the correct rows and selecting the correct options for the
same borders dropdown menu we used above.

Notice that there are no vertical lines (borders) anywhere on our table. That should almost
always be the case for your tables too.

40.12 Summary

Just like with guidelines we’ve discussed about R coding style; you don’t have to create tables
in exactly the same way that we do. But, you should have a good reason for all the decisions
you make leading up

877



Part IX

References

878



41 References

1. Ismay C, Kim AY. Chapter 1 getting started with data in R. Published online November
2019.

2. Stack Overflow. What are tags, and how should I use them? Published online January
2022.

3. Stack Overflow. How do I ask a good question? Published online January 2022.

4. RStudio. FAQ: Tips for writing r-related questions. Published online September 2021.

5. Wickham H. Style guide. In: Advanced R.; 2019.

6. Wickham H, Çetinkaya-Rundel M, Grolemund G. Workflow: Code style. In: R for
Data Science. second.; 2023.

7. Field A, Miles J, Field Z. Discovering Statistics Using R. Sage; 2013.

8. Wickham H. Tidy data. Journal of Statistical Software, Articles. 2014;59(10):1-23.

9. Grolemund G, Wickham H. R for Data Science.; 2017.

10. Wickham H, François R, Henry L, Müller K, RStudio. Programming with Dplyr.; 2020.

11. Peng RD, Hicks SC. Reproducible research: A retrospective. Annu Rev Public Health.
2021;42:79-93.

12. Peng RD. Reproducible research in computational science. Science.
2011;334(6060):1226-1227.

13. GitHub. Licensing a repository. Published online May 2022.

14. Bryan J. Happy Git and GitHub for the useR.; 2016.

15. Matthews JR, Matthews RW. Successful Scientific Writing: A Step-by-Step Guide for
the Biological and Medical Sciences. Cambridge University Press; 2014.

879



16. R Core Team. What Is r? R Foundation for Statistical Computing; 2024.

17. GitHub. About repositories. Published online December 2023.

18. RStudio. RStudio. Published online 2020.

880



A Glossary

Anchor A regular expression (regex) metacharacter that anchors a match to a position in a
string. The caret (^) anchors to the start of the string, and the dollar sign ($) anchors
to the end of the string.

Arguments Values provided inside the parentheses of a function to specify what the function
should act on or how it should behave.

Bivariate Describes analyses or relationships involving exactly two variables.

Collapse To summarize a data set by grouping and reducing multiple observations into a single
summary value per group, often using functions like summarise() in dplyr.

Complete case analysis An analysis that includes only observations with complete data for
all variables in the model, excluding any rows with missing values.

Console The interactive window in RStudio (usually bottom-left) where R commands can be
typed and executed immediately. The R console is useful for testing small pieces of code
and interactive data exploration. However, we recommend using R scripts or Quarto
files for all but the simplest programming or data-analysis tasks.

Conditional Operations Conditional operations control the flow of a program by executing
different blocks of code depending on whether specified conditions are TRUE or FALSE.
In R this includes the if / else family, vectorised helpers such as ifelse(), and higher-
level wrappers like case_when().

Data Checks Processes that verify the accuracy, completeness, or validity of data before anal-
ysis. Examples include type checks (e.g., numeric vs. character), range checks (e.g., no
ages below 0), completeness checks (e.g., missing-value rates), and cross-field consistency
checks (e.g., start � end dates).

Data frame R’s primary data structure for storing tabular data. Each column is a vector,
and all columns must have the same number of rows.

For loop A control structure that repeats a block of code once for each element in a sequence
or vector.

Frequency count The number of times a value or category appears in a dataset. Also called
a frequency, count, or n.

881



Functions A reusable block of code that performs a specific task when called. Functions take
inputs (arguments) and return outputs. Functions promote modularity, abstraction, and
reproducibility.

Global environment The main workspace in an R session where user-defined variables and
functions are stored unless otherwise specified.

Issue (GitHub) A GitHub feature used to track tasks, bugs, enhancements, or other requests
within a project.

Iteratively A method of solving a problem by repeatedly executing a set of instructions in a
step-by-step manner, often using loops. This approach can improve efficiency and help
prevent errors.

Join An operation that merges two tables based on shared key columns. In dplyr, functions
like inner_join(), left_join(), etc., determine how unmatched rows are handled.

Key A column or set of columns that uniquely identifies each row in a data set and enables
precise merging with other tables.

Lexical scoping rules A set of rules that determine which variables are accessible in a function
based on where they were defined in the code hierarchy.

List-wise Deletion A method of handling missing data by excluding any row that has at least
one missing value in variables of interest, leaving only complete cases.

Long A tidy data format where each row represents one measurement at one time point for
one unit, and columns contain values and their corresponding identifiers (e.g., variable
name or time).

MDL The Minimum Description Length (MDL) principle is a model selection principle stating
that the best model is the one that minimizes the combined complexity of the model
and the data encoded using that model.

Marginal totals Row and column totals in a contingency table, used to summarize the distri-
bution of each variable and to calculate the overall total.

Mean The arithmetic mean—often denoted ̄𝑥—is calculated by summing all values in a nu-
meric variable and dividing by the total number of values.

Median The middle number in an ordered list of values. When the list has an even number
of elements, the median is the average of the two middle numbers. Compared with the
mean, the median is relatively resistant to extreme values.

Merge A base-R term (function merge()) for combining two data frames by matching rows
on one or more key variables. Rows that do not match can be kept, dropped, or produce
missing values depending on the arguments.

Mode The value that occurs most often in a set of data. A data set may be unimodal (one
mode), multimodal (many modes), or have no mode (all values are equally frequent).

882



Non-standard Evaluation A programming behavior in which functions capture or modify ex-
pressions instead of immediately evaluating their values, commonly used in tidyverse
packages.

Objects Named containers for storing data or functions in R. Common object types include
vectors, lists, data frames, and functions.

Outcome variable The variable being predicted or explained in an analysis; also called the
dependent variable.

Pass To supply a value or object to a function’s argument when calling that function. For
example, passing 2 to the from argument in seq(from = 2, to = 100, by = 2).

Percentage A value representing a part per hundred. Calculated by dividing the number of
occurrences by the total number of observations and multiplying by 100. For example,
25% means 25 out of 100.

Person-level Describes data organized at the level of the individual, where each row corre-
sponds to one person.

Person-period Describes data structured with multiple rows per person, usually representing
repeated measurements across time or conditions.

Predictor variable A variable used to explain or predict the value of another variable; also
called an independent variable or explanatory variable.

Proportion A number between 0 and 1 that represents the fraction of a total. Calculated by
dividing the number of occurrences by the total number of observations.

Quantifier A regular expression metacharacter that defines how many times a pattern must
repeat. Common quantifiers include * (0 +), + (1 +), ? (0 – 1), and {m,n} (between m
and n times).

R “R is a language and environment for statistical computing and graphics. It is a GNU
project which is similar to the S language and environment which was developed at
Bell Laboratories (formerly AT&T, now Lucent Technologies) by John Chambers and
colleagues.”16 R is open source, and you can download it for free from The Comprehensive
R Archive Network (CRAN) at https://cran.r-project.org/.

Range The difference between the maximum and minimum values in a data set.

Regular Expressions Compact strings that describe search patterns for text. Regular expres-
sions (regexes) are used for tasks such as finding, extracting, replacing, or validating
character data (stringr, grepl(), gsub(), etc.).

Repository “A repository contains all of your code, your files, and each file’s revision history.
You can discuss and manage your work within the repository.”17 A repository can exist
locally on your computer or remotely on a server such as GitHub.

883

https://cran.r-project.org/


Return A command in a function that specifies what value to output when the function finishes
running. Instead of saying, “the seq() function gives us a sequence of numbers…,” we
could say, “the seq() function returns a sequence of numbers.”

RStudio An integrated development environment (IDE) for R. It includes a console, syntax-
highlighting editor with direct code execution, and tools for plotting, debugging, and
work space management. RStudio is available as open-source desktop software and as
server versions.18

Split - Apply - Combine A data-analysis strategy used by dplyr::group_by(), for example,
that involves splitting data into smaller components, applying a calculation separately
to each component, and then combining the individual results into a single output.

Standard deviation A measure of spread equal to the square root of the variance—the average
of the squared differences between each value and the mean.

Token A basic unit in text processing, typically referring to individual pieces of data like words,
numbers, or punctuation marks. Tokens include literal characters (a), metacharacters
(\d), or entire character classes ([A-Z]).

Two-way frequency table A table that displays the joint distribution of two categorical vari-
ables, showing the frequency of each combination of categories. Also called a crosstab
or contingency table.

Univariate Pertaining to a single variable. Univariate analysis describes or summarizes one
variable at a time.

Variance A measure of spread calculated as the average of the squared differences between
each value and the mean.

Vectorization A programming technique in which operations are applied to entire vectors (or
matrices/data frames) in a single step rather than iterating element-by-element. Vector-
ized code in R (x * 2, mean(x)) is clear and fast because the heavy computation occurs
in compiled code under the hood.

Wide A data format where repeated measures or variables are spread across multiple columns
(e.g., score_T1, score_T2, score_T3 for test scores across three terms), with one row
per subject or unit.

884


	Welcome
	Acknowledgements

	Introduction
	Goals
	Text conventions used in this book
	Other reading

	Contributing
	Typos
	Issues
	License Information

	About the Authors
	Brad Cannell
	Melvin Livingston

	Getting Started
	Installing R and RStudio
	Download and install on a Mac
	Download and install on a PC

	What is R?
	What is data?
	What is R?
	Transferring data
	Managing data
	Analyzing data
	Presenting data


	Navigating the RStudio Interface
	The console pane
	The environment pane
	The files pane
	The source pane
	RStudio preferences

	Speaking R's Language
	R is a language
	The R interpreter
	Errors
	Functions
	Passing values to function arguments

	Objects
	Comments
	Packages
	Programming style

	Let's Get Programming
	Simulating data
	Vectors
	Vector types
	Double vectors
	Integer vectors
	Logical vectors
	Factor vectors

	Data frames
	Tibbles
	The as_tibble function
	The tibble function
	The tribble function
	Why use tibbles

	Missing data
	Our first analysis
	Manual calculation of the mean
	Dollar sign notation
	Bracket notation
	The sum function
	Nesting functions
	The length function
	The mean function

	Some common errors
	Summary

	Asking Questions
	When should we seek help?
	Where should we seek help?
	How should we seek help?
	Creating a post on Stack Overflow
	Creating better posts and asking better questions

	Helping others
	Summary


	Coding Tools and Best Practices
	R Scripts
	Creating R scripts

	Quarto Files
	What is Quarto?
	Why use Quarto?
	Create a Quarto file
	YAML headers
	R code chunks
	Markdown
	Markdown headings

	Summary

	R Projects
	Coding Best Practices
	General principles
	Code comments
	Defining key variables
	What this code is trying to accomplish
	Why we chose this particular strategy

	Style guidelines
	Comments
	Object (variable) names
	Use names that are informative
	File Names


	Using Pipes
	What are pipes?
	How do pipes work?
	Keyboard shortcut
	Pipe style

	Final thought on pipes


	Data Transfer
	Introduction to Data Transfer
	File Paths
	Finding file paths
	Relative file paths

	Importing Plain Text Files
	Packages for importing data
	Importing space delimited files
	Specifying missing data values

	Importing tab delimited files
	Importing fixed width format files
	Vector of column widths
	Paired vector of start and end positions
	Using named arguments

	Importing comma separated values files
	Additional arguments

	Importing Binary Files
	Packages for importing data
	Importing Microsoft Excel spreadsheets
	Importing data from other statistical analysis software
	Importing SAS data sets
	Importing Stata data sets

	RStudio's Data Import Tool
	Exporting Data
	Plain text files
	R binary files


	Descriptive Analysis
	Introduction to Descriptive Analysis
	What is descriptive analysis and why would we do it?
	What kind of descriptive analysis should we perform?

	Numerical Descriptions of Categorical Variables
	Factors
	Coerce a numeric variable
	Coerce a character variable

	Height and Weight Data
	View the data

	Calculating frequencies
	The base R table function
	The gmodels CrossTable function
	The tidyverse way

	Calculating percentages
	Missing data
	Formatting results
	Using freqtables

	Measures of Central Tendency
	Calculate the mean
	Calculate the median
	Calculate the mode
	Compare mean, median, and mode
	Data checking
	Properties of mean, median, and mode
	Missing data
	Using meantables

	Measures of Dispersion
	Comparing distributions

	Describing the Relationship Between a Continuous Outcome and a Continuous Predictor
	Pearson Correlation Coefficient
	Calculating r
	Correlation intuition


	Describing the Relationship Between a Continuous Outcome and a Categorical Predictor
	Single predictor and single outcome
	Multiple predictors

	Describing the Relationship Between a Categorical Outcome and a Categorical Predictor
	Comparing two variables


	Data Management
	Introduction to Data Management
	Multiple paradigms for data management in R
	The dplyr package
	The dplyr verbs
	The .data argument
	The … argument
	Non-standard evaluation


	Creating and Modifying Columns
	Creating data frames
	Dollar sign notation
	Bracket notation
	Modify individual values
	The mutate() function
	Adding or modifying a single column
	Recycling rules
	Using existing variables in name-value pairs
	Adding or modifying multiple columns
	Rowwise mutations
	Group_by mutations


	Subsetting Data Frames
	The select() function
	The rename() function
	The filter() function
	Subgroup analysis
	Complete case analysis

	Deduplication
	The distinct() function
	Complete duplicate row add tag
	Partial duplicate rows
	Partial duplicate rows - add tag
	Count the number of duplicates
	What to do about duplicates


	Working with Dates
	Date vector types
	Dates under the hood
	Coercing date-times to dates
	Coercing character strings to dates
	Change the appearance of dates with format()
	Some useful built-in dates
	Today's date
	Today's date-time
	Character vector of full month names
	Character vector of abbreviated month names
	Creating a vector containing a sequence of dates

	Calculating date intervals
	Calculate age as the difference in time between dob and today
	Rounding time intervals

	Extracting out date parts
	Sorting dates

	Working with Character Strings
	Coerce to lowercase
	Lowercase
	Upper case
	Title case
	Sentence case

	Trim white space
	Regular expressions
	Remove the comma
	Remove middle initial
	Remove double spaces

	Separate values into component parts
	Dummy variables

	Conditional Operations
	Operands and operators
	Testing multiple conditions simultaneously
	Testing a sequence of conditions
	Recoding variables
	case_when() is lazy
	Recode missing

	Working with Multiple Data Frames
	Combining data frames vertically: Adding rows
	Combining more than 2 data frames
	Adding rows with differing columns
	Differing column positions
	Differing column names

	Combining data frames horizontally: Adding columns
	Combining data frames horizontally by position
	Combining data frames horizontally by key values


	Restructuring Data frames
	The tidyr package
	Pivoting longer
	The names_to argument
	The names_prefix argument
	The values_to argument
	The names_transform argument
	Pivoting multiple sets of columns
	The names_sep argument
	The .value special value
	Why person-period?

	Pivoting wider
	Why person-level?

	Pivoting summary statistics
	Pivoting summary statistics wide to long
	Pivoting summary statistics long to wide

	Tidy data
	Each variable must have its own column
	Each observation must have its own row
	Each value must have its own cell

	The complete() function


	Repeated Operations
	Introduction to Repeated Operations
	Multiple methods for repeated operations in R
	Tidy evaluation

	Writing Functions
	When to write functions
	How to write functions
	The function() function
	The function writing process

	Giving your function arguments default values
	The values your functions return
	Lexical scoping and functions
	Tidy evaluation

	Column-wise Operations in dplyr
	The across() function
	Across with mutate
	Across with summarise
	Across with filter
	Summary

	Writing For Loops
	How to write for loops
	The for loop body
	The for() function

	Using for loops for data transfer
	Using for loops for data management
	Using for loops for analysis

	Using the purrr Package
	Comparing for loops and the map functions
	Using purrr for data transfer
	Example 1: Importing multiple sheets from an Excel workbook
	Why walk instead of map?
	why we didn't assign the return value of walk() to an object?

	Using purrr for data management
	Example 1: Adding NA at multiple positions
	Example 2. Detecting matching values by position

	Using purrr for analysis
	Example 1: Continuous statistics
	Example 2: Categorical statistics



	Collaboration
	Introduction to git and GitHub
	Versioning
	Preservation
	Reproducibility
	Collaboration
	Summary

	Using git and GitHub
	Install git
	Sign up for a GitHub account
	Install GitKraken
	Example 1: Contribute to R4Epi
	Example 2: Create a repository for a research project
	Step 1: Create a repository on GitHub
	Step 2: Clone the repository to your computer
	Step 3: Add an R project file to the repository
	Step 4: Update and commit gitignore
	Step 5: Keep adding and committing files

	Committing and pushing
	Example 3: Contribute to a research project
	Forking a repository
	Creating a pull request

	Summary


	Presenting Results
	Creating Tables with R and Microsoft Word
	Table 1
	Opioid drug use
	Table columns
	Table rows
	Make the table skeleton
	Fill in column headers
	Group sample sizes
	Formatting column headers

	Fill in row headers
	Label statistics
	Formatting row headers

	Fill in data values
	Manually type values
	Copy and paste values
	Knit a Word document
	flextable and officer
	Significant digits
	Formatting data values

	Fill in title
	Fill in footnotes
	Formatting footnotes

	Final formatting
	Adjust column widths
	Merge cells
	Remove cell borders

	Summary


	References
	References

	Appendices
	Glossary


